请问幂级数∑(n=1,∞)nx^n-1的和函数的范围是怎么来的?

答案是1/(1-x)²,x∈(-1,1)这个-1到1是怎么来的呀... 答案是1/(1-x)²,x∈(-1,1)这个-1到1是怎么来的呀 展开
 我来答
蓝雪儿老师
高能答主

2021-08-04 · 愿千里马,都找到自己的伯乐!
蓝雪儿老师
采纳数:266 获赞数:85192

向TA提问 私信TA
展开全部

具体解析如下:

令an=nx^(n-1)     由a(n+1)/an=(n/(n-1))*x<1可得。

|x|<1   所以收敛域为:|x|<1。

Sn=1+2x+3x^2+...+nx^(n-1)。

xSn=1x+2x^2+3x^3+...+nx^n。

相减得:(1-x)Sn=1+x+x^2+....+x^(n-1)-nx^n。

=1+(x(-1x^(n-1)))/(1-x)-nx^n。

取极限可得S=1+x/(1-x)=1/(1-x)   S即为和函数。

幂级数与解析函数:

幂级数局部上由收敛幂级数给出的函数叫做解析函数。解析函数可分成实解析函数与复解析函数。所有的幂级数函数在其收敛圆盘内都是解析函数,并且在所有点上都可展。

根据零点孤立原理,解析函数的零点必然是孤立点。在复分析中,所有的全纯函数(即复可微函数)都是无穷可微函数,并是复解析函数,这在实分析中则不然。

抽象代数中,幂级数研究的重点是其作为一个半环的代数性质。幂级数的系数域是实数或复数或其它的域不再重要,敛散性也不再讨论。这样抽离出的代数概念被称为形式幂级数。形式幂级数在组合代数有重要用处,例如作为母函数而运用在许多组合恒等式的推导中。

小溪趣谈电子数码
高粉答主

2020-07-22 · 专注解答各类电子数码疑问
小溪趣谈电子数码
采纳数:2103 获赞数:584780

向TA提问 私信TA
展开全部

解答:用柯西判别法可以判断收敛半径为1,另外在1处显然发散,在-1处为莱布尼茨型级数显然收敛,所以收敛域为[-1,1),令S=∑(∞,n=1)1/nx∧n,则S ′=∑(∞,n=1)x∧(n-1)=1/(1-x)所以S=∫1/(1-x)dx=-ln(1-x)+C,由S(0)=0可知C=0,所以S=-ln(1-x)(端点-1处的值利用幂级数的连续性可知也满足这个式子)。

∑ n x^(n+1) ,a(n) = n,a(n+1) / a(n) ->1=> 收敛半径 R = 1,收敛区间 (-1,1)看区间端点x= ±1,∑ n 与 ∑ n (-1)^(n+1) 通项极限不存在,故发散,所以收敛域 (-1,1)。

扩展资料:

求幂级数的和函数的步骤:

1、求出收敛域。

2、在收敛区间上利用已知无穷级数的和函数或者逐项积分、逐项求导的方法求出和函数。

3、利用和函数的连续性, 考察上一步求出的和函数与原来函数在端点处是否相等.

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
西域牛仔王4672747
2020-03-14 · 知道合伙人教育行家
西域牛仔王4672747
知道合伙人教育行家
采纳数:30570 获赞数:146281
毕业于河南师范大学计算数学专业,学士学位, 初、高中任教26年,发表论文8篇。

向TA提问 私信TA
展开全部
|u(n+1) / u(n)|
=(n+1)/n * |x|
==> |x| (n ==> ∞),
令 |x|<1,得 - 1<x<1。
更多追问追答
追问
意思是幂级数有和函数的条件必须是收敛对吗
追答
是的,收敛后才能求和函数
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式