已知f(x)=x^4-2^x在区间(-2,2)内有两根,试用matlab命令求这两个根。
综述如下:
r(x~2+-2+22)ds
= T4 ds
=16
或将方程参数化然后计算:
z2+32+A2=4
x+3+2=0
将=-x-3代入^2+y~2+2=4中
==>x2+y~2+xy=2
(x+y/2)2+(V3y/2)~2=2
fa: y/2 v2c0st
f v3y/2 28int
ニ2
(a =v2cost-(v6/3)sint, da =fv2sint-(V6/3)cost
dt
f y=(2v6/3)sint dy= -2v6/3)cost dt
f x=-v2cost -(v6/3)sint, d: v2sint-( v6/3)cos
dt
0st≤2a
ds =VI(da)2 +(dy)42+(dz)] dt v4 dt =2 dt
(x42+3y~2+22)ds
f(0-2)(v2cost-(v6/3)sint]/2 + 2
1v2cost-(v6/3)sint1 2) *2 dt
(0→2r)4大2dt
=16x
一次洛必达法则,再使用导数的定义:
lim(h→0) /h^2
=lim(h→0) /(2h)
=lim(h→0) /h
=lim(h→0){2×/(2h)-[f'(x+h)-f'(x)]/h}
=2×lim(h→0)/(2h)-lim(h→0)/h
=2×f''(x)-f''(x)
=f''(x)
平方根,又叫二次方根,对于非负实数来说,是指某个自乘结果等于的实数,表示为〔√ ̄〕,其中属于非负实数的平方根称算术平方根。同时,根也指未知方程两边的解。
数学中的平方根
1、算术平方根
一个正数有两个平方根;0只有一个平方根,就是0本身;负数没有平方根。例:9的平方根是±3注:有时我们说的平方根指算术平方根。
2、二次方根
若一个数x的平方等于a,即=a,那么这个数x就叫做a的平方根(square root,也叫做二次方根),通俗的说,就是一个数乘以它的本身,等于另一个数,原来的那个数就是乘完的那个数的平方根。
r(x~2+-2+22)ds
= T4 ds
=16
或将方程参数化然后计算
z2+32+A2=4
x+3+2=0
将=-x-3代入^2+y~2+2=4中
==>x2+y~2+xy=2
(x+y/2)2+(V3y/2)~2=2
fa: y/2 v2c0st
f v3y/2 28int
ニ2
(a =v2cost-(v6/3)sint, da =fv2sint-(V6/3)cost
dt
f y=(2v6/3)sint dy= -2v6/3)cost dt
f x=-v2cost -(v6/3)sint, d: v2sint-( v6/3)cos
dt
0st≤2a
ds =VI(da)2 +(dy)42+(dz)] dt v4 dt =2 dt
(x42+3y~2+22)ds
f(0-2)(v2cost-(v6/3)sint]/2 + [(2v6/3)sint]2
1v2cost-(v6/3)sint1 2) *2 dt
(0→2r)4大2dt
=16x
一次洛必达法则,再使用导数的定义
lim(h→0) [f(x+2h)-2f(x+h)+f(x)]/h^2
=lim(h→0) [2f'(x+2h)-2f'(x+h)]/(2h)
=lim(h→0) [f'(x+2h)-f'(x+h)]/h
=lim(h→0) {2×[f'(x+2h)-f'(x)]/(2h)-[f'(x+h)-f'(x)]/h}
=2×lim(h→0)[f'(x+2h)-f'(x)]/(2h)-lim(h→0)[f'(x+h)-f'(x)]/h
=2×f''(x)-f''(x)
=f''(x)