设f(x)是连续函数,F(x)是f(x)的原函数,则(  )A.当f(x)是奇函数时,F(x)必是偶函数B.当

 我来答
昂凌春夫壮
2019-10-25 · TA获得超过3.1万个赞
知道小有建树答主
回答量:9748
采纳率:31%
帮助的人:1037万
展开全部
以上选项可以举一些反例来推翻结论
b:f(x)=3x^2是偶函数,f(x)=x^3+2不是奇函数
c:f(x)=1是周期函数,f(x)=x不是周期函数
d:f(x)=2x是单调增函数,f(x)=x^2不是单调增函数(而是先减后增)
故只能选a
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
华华自在客来
2019-10-28 · TA获得超过2.9万个赞
知道大有可为答主
回答量:1.1万
采纳率:26%
帮助的人:612万
展开全部
(1)选项B,设f(x)=x2,它是偶函数,f(x)的原函数是F(x)=
1
3
x3+C(C为任意常数),但F(x)并不是奇函数(除了C=0外),所以排除B.
(2)选项C,设f(x)=sin2x,但它的原函数F(x)=
1
2
x?
1
4
sin2x+C(C为任意常数)不是周期函数,所以排除C.
(3)选项D,设f(x)=x,它是R上的增函数,但它的原函数F(x)=
1
2
x2+C(C为任意常数),不是R上的增函数,所以排除D.
(4)选项A,由题意设F(x)
=∫
x
0
f(t)dt+C(C为任意常数),则F(?x)
=∫
?x
0
f(t)dt+C
令u=?t
.
-

x
0
f(?u)du+C,
∴如果f(x)是奇函数,则有f(-u)=-f(u)
∴F(-x)=

x
0
f(u)du+C=F(x),选项A正确.
故选:A.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式