高一数学教学设计
高一数学教学设计5篇
作为一名高一数学教师,通常需要进行教案编写工作,编写教案有利于我们科学、合理地支配课堂时间。那么高一数学教学教案该怎么设计呢?下面是我给大家整理的高一数学教学设计,希望大家喜欢!
高一数学教学设计篇1
一、教材
《直线与圆的位置关系》是高中人教版必修2第四章第二节的内容,直线和圆的位置关系是本章的重点内容之一。从知识体系上看,它既是点与圆的位置关系的延续与提高,又是学习切线的判定定理、圆与圆的位置关系的基础。从数学思想方法层面上看它运用运动变化的观点揭示了知识的发生过程以及相关知识间的内在联系,渗透了数形结合、分类讨论、类比、化归等数学思想方法,有助于提高学生的思维品质。
二、学情
学生初中已经接触过直线与圆相交、相切、相离的定义和判定;且在上节的学习过程中掌握了点的坐标、直线的方程、圆的方程以及点到直线的距离公式;掌握利用方程组的方法来求直线的交点;具有用坐标法研究点与圆的位置关系的基础;具有一定的数形结合解题思想的基础。
三、教学目标
(一)知识与技能目标
能够准确用图形表示出直线与圆的三种位置关系;可以利用联立方程的方法和求点到直线的距离的方法简单判断出直线与圆的关系。
(二)过程与方法目标
经历操作、观察、探索、总结直线与圆的位置关系的判断方法,从而锻炼观察、比较、概括的逻辑思维能力。
(三)情感态度价值观目标
激发求知欲和学习兴趣,锻炼积极探索、发现新知识、总结规律的能力,解题时养成归纳总结的良好习惯。
四、教学重难点
(一)重点
用解析法研究直线与圆的位置关系。
(二)难点
体会用解析法解决问题的数学思想。
五、教学方法
根据本节课教材内容的特点,为了更直观、形象地突出重点,突破难点,借助信息技术工具,以几何画板为平台,通过图形的动态演示,变抽象为直观,为学生的数学探究与数学思维提供支持.在教学中采用小组合作学习的方式,这样可以为不同认知基础的学生提供学习机会,同时有利于发挥各层次学生的作用,教师始终坚持启发式教学原则,设计一系列问题串,以引导学生的数学思维活动。
六、教学过程
(一)导入新课
教师借助多媒体创设泰坦尼克号的情景,并从中抽象出数学模型:已知冰山的分布是一个半径为r的圆形区域,圆心位于轮船正西的l处,问,轮船如何航行能够避免撞到冰山呢?如何行驶便又会撞到冰山呢?
教师引导学生回顾初中已经学习的直线与圆的`位置关系,将所想到的航行路线转化成数学简图,即相交、相切、相离。
设计意图:在已有的知识基础上,提出新的问题,有利于保持学生知识结构的连续性,同时开阔视野,激发学生的学习兴趣。
(二)新课教学——探究新知
教师提问如何判断直线与圆的位置关系,学生先独立思考几分钟,然后同桌两人为一组交流,并整理出本组同学所想到的思路。在整个交流讨论中,教师既要有对正确认识的赞赏,又要有对错误见解的分析及对该学生的鼓励。
判断方法:
(1)定义法:看直线与圆公共点个数
即研究方程组解的个数,具体做法是联立两个方程,消去x(或y)后所得一元二次方程,判断△和0的大小关系。
(2)比较法:圆心到直线的距离d与圆的半径r做比较,
(三)合作探究——深化新知
教师进一步抛出疑问,对比两种方法,由学生观察实践发现,两种方法本质相同,但比较法只适合于直线与圆,而定义法适用范围更广。教师展示较为基础的题目,学生解答,总结思路。
已知直线3x+4y-5=0与圆x2+y2=1,判断它们的位置关系?
让学生自主探索,讨论交流,并阐述自己的解题思路。
当已知了直线与圆的方程之后,圆心坐标和半径r易得到,问题的关键是如何得到圆心到直线的距离d,他的本质是点到直线的距离,便可以直接利用点到直线的距离公式求d。类比前面所学利用直线方程求两直线交点的方法,联立直线与圆的方程,组成方程组,通过方程组解得个数确定直线与圆的交点个数,进一步确定他们的位置关系。最后明确解题步骤。
(四)归纳总结——巩固新知
为了将结论由特殊推广到一般引导学生思考:
可由方程组的解的不同情况来判断:
当方程组有两组实数解时,直线l与圆C相交;
当方程组有一组实数解时,直线l与圆C相切;
当方程组没有实数解时,直线l与圆C相离。
活动:我将抽取两位同学在黑板上扮演,并在巡视过程中对部分学生加以指导。最后对黑板上的两名学生的解题过程加以分析完善。通过对基础题的练习,巩固两种判断直线与圆的位置关系判断方法,并使每一个学生获得后续学习的信心。
(五)小结作业
在小结环节,我会以口头提问的方式:
(1)这节课学习的主要内容是什么?
(2)在数学问题的解决过程中运用了哪些数学思想?
设计意图:启发式的课堂小结方式能让学生主动回顾本节课所学的知识点。也促使学生对知识网络进行主动建构。
作业:在学生回顾本堂学习内容明确两种解题思路后,教师让学生对比两种解法,那种更简捷,明确本节课主要用比较d与r的关系来解决这类问题,对用方程组解的个数的判断方法,要求学生课外做进一步的探究,下一节课汇报。
七、板书设计
我的板书本着简介、直观、清晰的原则,这就是我的板书设计。
高一数学教学设计篇2
1、教材(教学内容)
本课时主要研究任意角三角函数的定义。三角函数是一类重要的基本初等函数,是描述周期性现象的重要数学模型,本课时的内容具有承前启后的重要作用:承前是因为可以用函数的定义来抽象和规范三角函数的定义,同时也可以类比研究函数的模式和方法来研究三角函数;启后是指定义了三角函数之后,就可以进一步研究三角函数的性质及图象特征,并体会三角函数在解决具有周期性变化规律问题中的作用,从而更深入地领会数学在其它领域中的重要应用、
2、设计理念
本堂课采用“问题解决”教学模式,在课堂上既充分发挥学生的主体作用,又体现了教师的引导作用。整堂课先通过问题引导学生梳理已有的知识结构,展开合理的联想,提出整堂课要解决的中心问题:圆周运动等具周期性规律运动可以建立函数模型来刻画吗?从而引导学生带着问题阅读和钻研教材,引发认知冲突,再通过问题引导学生改造或重构已有的认知结构,并运用类比方法,形成“任意角三角函数的定义”这一新的概念,最后通过例题与练习,将任意角三角函数的定义,内化为学生新的认识结构,从而达成教学目标、
3、教学目标
知识与技能目标:形成并掌握任意角三角函数的定义,并学会运用这一定义,解决相关问题、
过程与方法目标:体会数学建模思想、类比思想和化归思想在数学新概念形成中的重要作用、
情感态度与价值观目标:引导学生学会阅读数学教材,学会发现和欣赏数学的理性之美、
4、重点难点
重点:任意角三角函数的定义、
难点:任意角三角函数这一概念的理解(函数模型的建立)、类比与化归思想的渗透、
5、学情分析
学生已有的认知结构:函数的概念、平面直角坐标系的概念、任意角和弧度制的相关概念、以直角三角形为载体的锐角三角函数的概念、在教学过程中,需要先将学生的以直角三角形为载体的锐角三角函数的概念改造为以象限角为载体的锐角三角函数,并形成以角的终边与单位园的交点的.坐标来表示的锐角三角函数的概念,再拓展到任意角的三角函数的定义,从而使学生形成新的认知结构、
6、教法分析
“问题解决”教学法,是以问题为主线,引导和驱动学生的思维和学习活动,并通过问题,引导学生的质疑和讨论,充分展示学生的思维过程,最后在解决问题的过程中形成新的认知结构、这种教学模式能较好地体现课堂上老师的主导作用,也能充分发挥课堂上学生的主体作用、
7、学法分析
本课时先通过“阅读”学习法,引导学生改造已有的认知结构,再通过类比学习法引导学生形成“任意角的三角函数的定义”,最后引导学生运用类比学习法,来研究三角函数一些基本性质和符号问题,从而使学生形成新的认识结构,达成教学目标、
8、教学设计(过程)
一、引入
问题1:我们已经学过了任意角和弧度制,你对“角”这一概念印象最深的是什么?
问题2:研究“任意角”这一概念时,我们引进了平面直角坐标系,对平面直角坐标系,令你印象最深刻的是什么?
问题3:当角clipXimage002的终边在绕顶点O转动时,终边上的一个点P(x,y)必定随着终边绕顶点O作圆周运动,在这圆周运动中,有哪些数量?圆周运动的这些量之间的关系能用一个函数模型来刻画吗?
二、原有认知结构的改造和重构
问题4:当角clipXimage002[1]是锐角时,clipXimage004,线段OP的长度clipXimage006这几个量之间有何关系?
学生回答,分析结论,指出这种关系就是我们在初中学习过的锐角三角函数
学生阅读教材,并思考:
问题5:锐角三角函数是我们高中意义上的函数吗?如何利用函数的定义来理解它?
学生讨论并回答
三、新概念的形成
问题6:如果我们将角度推广到任意角,我们能得到任意角的三角函数的定义吗?
学生回答,并阅读教材,得到任意角三角函数的定义、并思考:
问题7:任意角三角函数的定义符合我们高中所学的函数定义吗?
展示任意角三角函数的定义,并指出它是如何刻划圆周运动的
并类比函数的研究方法,得出任意角三角函数的定义域和值域。
四、概念的运用
1、基础练习
①口算clipXimage008的值、
②分别求clipXimage010的值
小结:ⅰ)画终边,求终边与单位圆交点的坐标,算比值
ⅱ)诱导公式(一)
③若clipXimage012,试写出角clipXimage002[2]的值。
④若clipXimage015,不求值,试判断clipXimage017的符号
⑤若clipXimage019,则clipXimage021为第象限的角、
例1、已知角clipXimage002[3]的终边过点clipXimage024,求clipXimage026之值
若P点的坐标变为clipXimage028,求clipXimage030的值
小结:任意角三角函数的等价定义(终边定义法)
例2、一物体A从点clipXimage032出发,在单位圆上沿逆时针方向作匀速圆周运动,若经过的弧长为clipXimage034,试用clipXimage034[1]表示物体A所在位置的坐标。若该物体作圆周运动的圆的半径变为clipXimage006[1],如何用clipXimage034[2]来表示物体A所在位置的坐标?
小结:可以采用三角函数模型来刻画圆周运动
五、拓展探究
问题8:当角clipXimage002[4]的终边绕顶点O作圆周运动时,角clipXimage002[5]的终边与单位圆的交点clipXimage039的坐标clipXimage041clipXimage043与角clipXimage002[6]之间还可以建立其它函数模型吗?
思考:引入平面直角坐标系后,我们可以把圆周运动用数来刻画,这是将“形”转化成为“数”;角clipXimage002[7]正弦值是一个数,你能借助平面直角坐标系和单位圆,用“形”来表示这个“数”吗?角clipXimage002[8]余弦值、正切值呢?
六、课堂小结
问题9:请你谈谈本节课的收获有哪些?
七、课后作业
教材P21第6、7、8题
高一数学教学设计篇3
一、教材的本质、地位与作用
对数函数(第二课时)是20__人教版高一数学(上册)第二章第八节第二课时的内容,本小节涉及对数函数相关知识,分三个课时,这里是第二课时复习巩固对数函数图像及性质,并用此解决三类对数比大小问题,是对已学内容(指数函数、指数比大小、对数函数)的延续和发展,同时也体现了数学的实用性,为后续学习起到奠定知识基础、渗透方法的作用,因此本节内容起到了一种承上启下的作用。
二、教学目标
根据教学大纲的要求以及本节课的地位与作用,结合高一学生的认知特点确定教学目标如下:
学习目标:
1、复习巩固对数函数的图像及性质
2、运用对数函数的性质比较两个数的大小
能力目标:
1、培养学生运用图形解决问题的意识即数形结合能力
2、学生运用已学知识,已有经验解决新问题的能力
3、探索出方法,有条理阐述自己观点的能力
德育目标:
培养学生勤于思考、独立思考、合作交流等良好的个性品质
三、教材的重点及难点
对数比大小发挥的是承上启下的作用,对前一是复习巩固对数函数的图像和性质,二是对指数中比大小问题的数学思想及方法的再次体现和应用,对后为解对数方程及对数不等式奠定基础。所以确定本节课重点:运用对数函数图像性质比较两数的大小
教学中将在以下2个环节中突出教学重点:
1、利用学生预习后的心得交流,资源共享,互补不足
2、通过适当的练习,加强对解题方法的掌握及原理的理解
另一方面,学生在预习后上课的情况下,对于课本上知识有了一定的认识,但本节课教师要补充第三类比大小问题———同真异底型,对于学生以小组为单位自主探究有一定的挑战性。所以确定本节课难点:同真异底的对数比大小
教学中会在以下3个方面突破教学难点:
1、教师调整角色,让学生成为学习的主人,教师在其中起引导作用即可。
2、小组合作探索新问题时,注重生生合作、师生互动,适时用语言鼓励学生,增强学生参与讨论的自信。
3、本节课采用多媒体辅助教学,节省时间,加快课程进度,增强了直观形象性。
四、学生学情分析
长处:高一学生经过几年的数学学习,已具备一定的数学素养,对于已学知识或用过的数学思想、方法有一定的应用能力及应用意识,对于本节课而言,从知识上说,对数函数的图像和性质刚刚学过,本节课是知识的应用,从数学能力上说,指数比大小问题的解题思想和方法在这可借鉴,另外数形结合能力、小结概括能力、特殊到一般归纳能力已具备一点。
学生可能遇到的困难:本节课从教学内容上来看,第三类对数比大小是课本以外补充的内容,没有预习心得,让学生在课堂中快速通过合作探究来完成解题思路的构建,有一定的挑战性,从学生能力上来看,探索出方法,有条理阐述自己观点的能力还需加强锻炼,知识之间的联系认识上还显不足。
五、教法特点
新课程强调教师要调整自己的角色,改变传统的教育方式,在教育方式上,以学生为中心,让学生成为学习的主人,教师在其中起引导作用即可。基于此,本节课遵循此原则重点采用问题探究和启发引导式的教学方法。从预习交流心得出发,到探索新问题,再到题后的回顾总结,一切以学生为中心,处处体现学生的主体地位,让学生多说、多分析、多思考、多总结,引导学生运用自己的语言阐述观点,加强理解,在生生合作,师生互动中解决问题,为提高学生分析问题、解决问题能力打下基础。本节课采用多媒体辅助教学,节省时间,加快课程进度,增强了直观形象性。
六、教学过程分析
1、课件展示本节课学习目标
设计意图:明确任务,激发兴趣
2、温故知新(已填表形式复习对数函数的图像和性质)
设计意图:复习已学知识和方法,为学生形成知识间的联系和框架建立平台,并为下一步的应用打下基础。
3、预习后心得交流
1)同底对数比大小
2)既不同底数,也不同真数的对数比大小
以课本例题为例,交流解题思路,题后总结此类型比大小问题的一般方法,而后通过练习加强理解巩固
设计意图:通过学生的预习,自己总结方法及此方法适用的题型,有条理的阐述自己的学习心得,老师只需起引导作用,引导学生从题目表面上升到题目的实质,从而找到解决问题的有效方法。
4、合作探究——同真异底型的对数比大小
以例3为例,学生分组合作探究解题方法,预计两种:一是利用换底公式将此类型转化为同底异真型,利用之前总结的方法解决此问题。二是利用具体对数的大小关系探究出不同底对数函数在同一直角坐标系中的图像,以此来解决此类型比大小问题。
设计意图:这一部分是本节课的难点,探究中充分发挥学生的主动性,培养主动学习的意识,同时也锻炼学生各方面能力的很好机会,为以后的探究学习积累经验和方法,充分体现“授之以鱼,不如授之以渔”的教学理念。另外数学问题的解决仅仅只是一半,更重要的是解题之后的回顾,即反思,如果没有了反思,他们就错过了解题的一次重要而有效益的方面。因此,本题解决后,让学生反思明白,要想利用性质解决问题,关键要做到“脑中有图”,以“形”促“数”。
5、小结
以学生自主小结的方式总结本节课得收获,教师可引导小结三个方面:所学内容、数学思想、数学方法
6、思考题
以20__高考题为例,让学生学以致用,增强数学学习兴趣。
7、作业
包括两个方面:
1、书写作业
2、下节课前的预习作业
七、教学效果分析
通过本节课的教学实例来看,这种通过课本内容预习,而后课堂交流学习成果的方法效果不错,既能很好的完成教学任务,又能充分发挥学生学习的主动性。在自主探究时,学生分组讨论过程中,我参与小组讨论,对有能力的小组,在探究出一种方法后,可鼓励完成更多的方法探究,对于能力较弱的小组,可给予适当的提示,使学生都能动起来,课堂都有所收获,增强学生自信。另外,对于学生的总结回答,可能会比较慢,我一定会耐心听,及时鼓励,给予学生微笑和语言的鼓励,效果很好。在小结环节中,对于高一学生自己小结的方法,是我一直的教学尝试,由于只训练了半学期,学生只能达到小结知识的程度,在以后的训练中还会加入数学思想、数学方法的小结内容,使这些数学名词让学生不再觉得抽象,而是变成具体的,可操作的、具体的解题工具。
高一数学教学设计篇4
教学目标:
(1)了解集合的表示方法;
(2)能正确选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;
教学重点:掌握集合的表示方法;
教学难点:选择恰当的表示方法;
教学过程:
一、复习回顾:
1.集合和元素的定义;元素的三个特性;元素与集合的关系;常用的数集及表示。
2.集合{1,2}、{(1,2)}、{(2,1)}、{2,1}的元素分别是什么?有何关系
二、新课教学
(一).集合的表示方法
我们可以用自然语言和图形语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。
(1) 列举法:把集合中的元素一一列举出来,并用花括号“ ”括起来表示集合的方法叫列举法。
如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…;
说明:1.集合中的元素具有无序性,所以用列举法表示集合时不必考
虑元素的顺序。
2.各个元素之间要用逗号隔开;
3.元素不能重复;
4.集合中的元素可以数,点,代数式等;
5.对于含有较多元素的集合,用列举法表示时,必须把元素间的规律显示清楚后方能用省略号,象自然数集N用列举法表示为
例1.(课本例1)用列举法表示下列集合:
(1)小于10的所有自然数组成的集合;
(2)方程x2=x的所有实数根组成的集合;
(3)由1到20以内的所有质数组成的集合;
(4)方程组 的解组成的集合。
思考2:(课本P4的思考题)得出描述法的定义:
(2)描述法:把集合中的元素的公共属性描述出来,写在花括号{ }内。
具体方法:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。
一般格式:
如:{x|x-3>2},{(x,y)|y=x2+1},{x|直角三角形},…;
说明:
1.课本P5最后一段话;
2.描述法表示集合应注意集合的代表元素,如{(x,y)|y= x2+3x+2}与 {y|y= x2+3x+2}是不同的两个集合,只要不引起误解,集合的代表元素也可省略,例如:{x|整数},即代表整数集Z。
辨析:这里的{ }已包含“所有”的意思,所以不必写{全体整数}。下列写法{实数集},{R}也是错误的。
例2.(课本例2)试分别用列举法和描述法表示下列集合:
(1)方程x2—2=0的所有实数根组成的集合;
(2)由大于10小于20的所有整数组成的集合;
(3)方程组 的解。
思考3:(课本P6思考)
说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。
(二).课堂练习:
1.课本P6练习2;
2.用适当的方法表示集合:大于0的所有奇数
3.集合A={x| ∈Z,x∈N},则它的元素是 。
4.已知集合A={x|-3<x<3,x∈z},b={(x,y)|y=x p="" +1,x∈a},则集合b用列举法表示是
归纳小结:
本节课从实例入手,介绍了集合的常用表示方法,包括列举法、描述法。
作业布置:
高一数学教学设计篇5
一、指导思想与理论依据
数学是一门培养人的思维,发展人的思维的重要学科。因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。所以在学生为主体,教师为主导的原则下,要充分揭示获取知识和方法的思维过程。因此本节课我以建构主义的“创设问题情境——提出数学问题——尝试解决问题——验证解决方法”为主,主要采用观察、启发、类比、引导、探索相结合的教学方法。在教学手段上,则采用多媒体辅助教学,将抽象问题形象化,使教学目标体现的更加完美。
二、教材分析
三角函数的诱导公式是普通高中课程标准实验教科书(人教A版)数学必修四,第一章第三节的内容,其主要内容是三角函数诱导公式中的公式(二)至公式(六)。本节是第一课时,教学内容为公式(二)、(三)、(四)。教材要求通过学生在已经掌握的任意角的三角函数的定义和诱导公式(一)的基础上,利用对称思想发现任意角、终边的对称关系,发现他们与单位圆的交点坐标之间关系,进而发现他们的三角函数值的关系,即发现、掌握、应用三角函数的诱导公式公式(二)、(三)、(四)。同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求。为此本节内容在三角函数中占有非常重要的地位。
三、学情分析
本节课的授课对象是本校高一(1)班全体同学,本班学生水平处于中等偏下,但本班学生具有善于动手的良好学习习惯,所以采用发现的教学方法应该能轻松的完成本节课的教学内容。
四、教学目标
(1)基础知识目标:理解诱导公式的发现过程,掌握正弦、余弦、正切的诱导公式;
(2)能力训练目标:能正确运用诱导公式求任意角的正弦、余弦、正切值,以及进行简单的三角函数求值与化简;
(3)创新素质目标:通过对公式的推导和运用,提高三角恒等变形的能力和渗透化归、数形结合的数学思想,提高学生分析问题、解决问题的能力;
(4)个性品质目标:通过诱导公式的学习和应用,感受事物之间的普通联系规律,运用化归等数学思想方法,揭示事物的本质属性,培养学生的唯物史观。
五、教学重点和难点
1、教学重点
理解并掌握诱导公式。
2、教学难点
正确运用诱导公式,求三角函数值,化简三角函数式。
六、教法学法以及预期效果分析
高中数学优秀教案高中数学教学设计与教学反思
“授人以鱼不如授之以鱼”,作为一名老师,我们不仅要传授给学生数学知识,更重要的是传授给学生数学思想方法,如何实现这一目的,要求我们每一位教者苦心钻研、认真探究。下面我从教法、学法、预期效果等三个方面做如下分析。
1、教法
数学教学是数学思维活动的教学,而不仅仅是数学活动的结果,数学学习的目的不仅仅是为了获得数学知识,更主要作用是为了训练人的思维技能,提高人的思维品质。
在本节课的教学过程中,本人以学生为主题,以发现为主线,尽力渗透类比、化归、数形结合等数学思想方法,采用提出问题、启发引导、共同探究、综合应用等教学模式,还给学生“时间”、“空间”,由易到难,由特殊到一般,尽力营造轻松的学习环境,让学生体味学习的快乐和成功的喜悦。
2、学法
“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,很多课堂教学常常以高起点、大容量、快推进的做法,以便教给学生更多的知识点,却忽略了学生接受知识需要时间消化,进而泯灭了学生学习的兴趣与热情。如何能让学生程度的消化知识,提高学习热情是教者必须思考的问题。
在本节课的教学过程中,本人引导学生的学法为思考问题、共同探讨、解决问题简单应用、重现探索过程、练习巩固。让学生参与探索的全部过程,让学生在获取新知识及解决问题的方法后,合作交流、共同探索,使之由被动学习转化为主动的自主学习。
3、预期效果
本节课预期让学生能正确理解诱导公式的发现、证明过程,掌握诱导公式,并能熟练应用诱导公式了解一些简单的化简问题。