3.设+z=z(x,y)+是由+2x+y+z=e^2z+所确定的隐函数,求+(ax^2)/(ax)0y
1个回答
关注
展开全部
亲,
根据隐函数定理,我们得到:
$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{2}{e^{2z}-1}$$
其中,$F(x,y,z) = 2x + y + z - e^{2z}$。
将$x=ax_0$代入上式,我们得到:
$$\left.\frac{\partial z}{\partial x}\right|_{x=ax_0} = -\frac{2}{e^{2z}-1}\bigg|_{x=ax_0} = -\frac{2}{e^{2z(ax_0,y)}-1}$$
因此,
$$\left.\frac{\partial}{\partial x}\left(\frac{ax^2}{ax}\right)\right|_{x=ax_0} = \left.\frac{\partial}{\partial x}(ax)\frac{\partial z}{\partial x}\right|_{x=ax_0} = a\left.\frac{\partial z}{\partial x}\right|_{x=ax_0} = a\frac{2}{1-e^{2z(ax_0,y)}}$$
其中,$z(ax_0,y)$需要通过求解$2ax_0 + y + z = e^{2z}$得到。
咨询记录 · 回答于2024-01-08
3.设+z=z(x,y)+是由+2x+y+z=e^2z+所确定的隐函数,求+(ax^2)/(ax)0y
亲,很高兴为您解答: 根据隐函数定理,有:
$$\frac{\partial z}{\partial x}=-\frac{F_x}{F_z}=-\frac{2}{e^{2z}-1}$$
其中,$F(x,y,z)=2x+y+z-e^{2z}$。
将$x=ax_0$代入上式,得:
$$\left.\frac{\partial z}{\partial x}\right|_{x=ax_0}=-\frac{2}{e^{2z}-1}\bigg|_{x=ax_0}=-\frac{2}{e^{2z(ax_0,y)}-1}$$
因此,
$$\left.\frac{\partial}{\partial x}\left(\frac{ax^2}{ax}\right)\right|_{x=ax_0}=\left.\frac{\partial}{\partial x}(ax)\frac{\partial z}{\partial x}\right|_{x=ax_0}=a\left.\frac{\partial z}{\partial x}\right|_{x=ax_0}=a\frac{2}{1-e^{2z(ax_0,y)}}$$
其中,$z(ax_0,y)$需要通过求解$2ax_0+y+z=e^{2z}$得到。