若两个函数的极限都不存在,相加后极限存在的例子
1个回答
关注
展开全部
相加后极限不存在,这个是可以证明的,建议采用反证法
不过相乘就难说了,我给你看两个例子:
1.相乘存在:函数1:y=n,函数2:y=1/n^2
两个相乘后在n趋向无穷的时候极限为0
2.相乘不存在:函数1:y=n^2,函数2:y=1/x
两个相乘后在n趋向无穷的时候极限不存在
咨询记录 · 回答于2021-10-13
若两个函数的极限都不存在,相加后极限存在的例子
相加后极限不存在,这个是可以证明的,建议采用反证法不过相乘就难说了,我给你看两个例子:1.相乘存在:函数1:y=n,函数2:y=1/n^2两个相乘后在n趋向无穷的时候极限为02.相乘不存在:函数1:y=n^2,函数2:y=1/x两个相乘后在n趋向无穷的时候极限不存在
两个函数极限都不存在,相加后的和极限存在的例子
相加后的极限存在
是可能存在的,但是并不一定存在。判断极限是否存在的方法是:分别考虑左右极限。极限存在的充分必要条件是左右极限都存在且相等。用数学表达式表示为:极限不存在的条件:1、当左极限与右极限其中之一不存在或者两个都不存在;2、左极限与右极限都存在,但是不相等。几何意义:1、在区间(a-ε,a+ε)之外至多只有N个(有限个)点。2、所有其他的点xN+1,xN+2,(无限个)都落在该邻域之内。这两个条件缺一不可,如果一个数列能达到这两个要求,则数列收敛于a;而如果一个数列收敛于a,则这两个条件都能满足。换句话说,如果只知道区间(a-ε,a+ε)之内有{xn}的无数项,不能保证(a-ε,a+ε)之外只有有限项,是无法得出{xn}收敛于a的,在做判断题的时候尤其要注意这一点。
我要相加后极限存在的几个例子
你好,先加后极限存在的例子目前还没有算出来哦,要是算出来可以成为数学大师了
不存在已经被证明了