向完全图即任意两个顶点之间有且只有一条边,那么n个顶点的完全无向图共有_

1个回答
展开全部
咨询记录 · 回答于2022-04-22
向完全图即任意两个顶点之间有且只有一条边,那么n个顶点的完全无向图共有_
你好。有n个顶点的强连通图最多有n(n-1)条边,最少有n条边。 首先,有向连通的一个必要条件是图的无向底图连通,这意味着E >= n-1。 其次,证明E > n-1。因当E=n-1时,无向底图为树,任取两顶点s,t,从s到t有且只有一条无向路径,若有向路径s->t连通,则有向路径t->s必不存在。得证: 再次,证明E可以=n。设n个顶点v1,v2,...vn,顺次连接有向边v1v2,v2v3...vn-1vn,vnv1,这个环是有向连通的。 因此最少有n条边。 二、最多的情况:即n个顶点中两两相连,若不计方向,n个点两两相连有n(n-1)/2条边,而由于强连通图是有向图,故每条边有两个方向
已赞过
你对这个回答的评价是?
评论 收起
下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消