设f(x)=max{1-|x|,0},求f(x-t)在0到x上的积分

1个回答
展开全部
咨询记录 · 回答于2022-09-23
设f(x)=max{1-|x|,0},求f(x-t)在0到x上的积分
答案是∫(0,x)f(t)dt具体步骤如下:[∫(0,x)(x-t)f(t)dt]'=[∫(0,x)xf(t)dt-∫(0,x)tf(t)dt]'=[x∫(0,x)f(t)dt-∫(0,x)tf(t)dt]'=∫(0,x)f(t)dt+x[∫(0,x)f(t)dt]'-[∫(0,x)tf(t)dt]'=∫(0,x)f(t)dt+xf(x)-xf(x)=∫(0,x)f(t)dt扩展资料常用积分公式:1)∫0dx=c2)∫x^udx=(x^(u+1))/(u+1)+c3)∫1/xdx=ln|x|+c4)∫a^xdx=(a^x)/lna+c5)∫e^xdx=e^x+c6)∫sinxdx=-cosx+c7)∫cosxdx=sinx+c8)∫1/(cosx)^2dx=tanx+c9)∫1/(sinx)^2dx=-cotx+c10)∫1/√(1-x^2) dx=arcsinx+c
下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消