高阶等价无穷小公式

1个回答
我是康1
2023-03-22 · TA获得超过1427个赞
知道小有建树答主
回答量:3705
采纳率:100%
帮助的人:53.4万
展开全部
高阶等价无穷小公式如下:
1、sinx~x、tanx~x、arcsinx~x、arctanx~x、1-cosx~(1/2)*(x^2)~secx-1;
2、(a^x)-1~x*lna [a^x-1)/x~lna];
3、(e^x)-1~x、ln(1+x)~x;
4、(1+Bx)^a-1~aBx、[(1+x)^1/n]-1~(1/n)*x、loga(1+x)~x/lna、(1+x)^a-1~ax(a≠0)。
以上公式的条件是当x趋近于0时。
无穷小的性质:
1、无穷小量不是一个数,它是一个变量。
2、零可以作为无穷小量的唯一一个常量。
3、无穷小量与自变量的趋势相关。
4、有限个无穷小量之和仍是无穷小量。
5、有限个无穷小量之积仍是无穷小量。
6、有界函数与无穷小量之积为无穷小量。
7、特别地,常数和无穷小量的乘积也为无穷小量。
8、恒不为零的无穷小量的倒数为无穷大,无穷大的倒数为无穷小。
无穷小比阶:
1、高低阶无穷小量:lim(x趋近于x0)f(x)/g(x)=0,则称当x趋近于x0时,f为g的高阶无穷小量,或称g为f的低阶无穷小量。
2、同阶无穷小量:lim(x趋近于x0)f(x)/g(x)=c(c不等于0),ƒ和ɡ为x趋近于x0时的同阶无穷小量。
3、等价无穷小量:lim(x趋近于x0)f(x)/g(x)=1,则称ƒ和ɡ是当x趋近于x0时的等价无穷小量,记做f(x)~g(x)[x趋近于x0]。

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消