已知三角形abc内角ABC的对边分别为abc+且b+c/a=cosC+根号3sinC求a+c/b的取值+
1个回答
关注
展开全部
根据正弦定理,有:
a/sinA = b/sinB = c/sinC
将对边分别表示出来,得:
a/(b+c) = b/a = c/(b+c+a)
即
a^2 = b(b+c) ——式(1)
b/a = sinB/sinA = sinC/sinB = (cosC+√3sinC)/sinB
带入正弦定理得:
a/cosA = b/cosB = c/cosC
即
a/b = cosA/cosB = cosA/cosC = (sinB/sinC)×(cosA/cosB)
代入sinB/sinC和cosC+√3sinC/sinB的表达式,整理得:
a/b = 2cosA/(cosC+cosA+√3sinA)
同理可得
c/b = 2cosC/(cosA+cosC+√3sinA)
将c/b带入a^2 = b(b+c)中得:
a^2 = b^2 + bc
代入cosA =(b^2 + c^2 - a^2)/2bc,化简得:
cosA = (b+c)/2a
同理可得
cosC = (a+b)/2c
将cosC和cosA带入c/b和a/b的表达式中,化简得:
c/b = (a+2c-b)/(a+b+c) ——式(2)
a/b = (2a+b-c)/(a+b+c)
将式(1)和式(2)代入,消去b+c和a+c,得:
a^2 - ac - 2c^2 = 0
解得
a/c = (1+√3)/2
将a/c代入c/b和a/b的表达式中,得:
c/b = (3-√3)/2
a/b = (3+√3)/2
因此,a+c/b的取值为(1+√3)/2 + (3+√3)/2 = 2+√3
咨询记录 · 回答于2024-01-06
已知三角形abc内角ABC的对边分别为abc+且b+c/a=cosC+根号3sinC求a+c/b的取值+
根据正弦定理,有:a/sinA = b/sinB = c/sinC
将对边分别表示出来,得:a/(b+c) = b/a = c/(b+c+a)
即a^2 = b(b+c) ——式(1)
b/a = sinB/sinA = sinC/sinB = (cosC+√3sinC)/sinB
带入正弦定理得:a/cosA = b/cosB = c/cosC
即a/b = cosA/cosB = cosA/cosC = (sinB/sinC)×(cosA/cosB)
代入sinB/sinC和cosC+√3sinC/sinB的表达式,整理得:a/b = 2cosA/(cosC+cosA+√3sinA)
同理可得c/b = 2cosC/(cosA+cosC+√3sinA)
将c/b带入a^2 = b(b+c)中得:a^2 = b^2 + bc
代入cosA =(b^2 + c^2 - a^2)/2bc,化简得:cosA = (b+c)/2a
同理可得cosC = (a+b)/2c
将cosC和cosA带入c/b和a/b的表达式中,化简得:c/b = (a+2c-b)/(a+b+c) ——式(2)
a/b = (2a+b-c)/(a+b+c)
将式(1)和式(2)代入,消去b+c和a+c,得:a^2 - ac - 2c^2 = 0
解得a/c = (1+√3)/2
将a/c代入c/b和a/b的表达式中,得:c/b = (3-√3)/2
a/b = (3+√3)/2
因此,a+c/b的取值为(1+√3)/2 + (3+√3)/2 = 2+√3
这边看不到信息
可以打字吗
# 根据正弦定理
根据正弦定理,有:a/sinA = b/sinB = c/sinC
将对边分别表示出来,得:a/(b+c) = b/a = c/(b+c+a)
即a^2 = b(b+c) ——式(1)
b/a = sinB/sinA = sinC/sinB = (cosC+√3sinC)/sinB
带入正弦定理得:a/cosA = b/cosB = c/cosC
即a/b = cosA/cosB = cosA/cosC = (sinB/sinC)×(cosA/cosB)
代入sinB/sinC和cosC+√3sinC/sinB的表达式,整理得:a/b = 2cosA/(cosC+cosA+√3sinA)
同理可得c/b = 2cosC/(cosA+cosC+√3sinA)
将c/b带入a^2 = b(b+c)中得:a^2 = b^2 + bc
代入cosA =(b^2 + c^2 - a^2)/2bc,化简得:cosA = (b+c)/2a
同理可得cosC = (a+b)/2c
将cosC和cosA带入c/b和a/b的表达式中,化简得:c/b = (a+2c-b)/(a+b+c) ——式(2)
a/b = (2a+b-c)/(a+b+c)
将式(1)和式(2)代入,消去b+c和a+c,得:a^2 - ac - 2c^2 = 0
解得a/c = (1+√3)/2
将a/c代入c/b和a/b的表达式中,得:c/b = (3-√3)/2a/b = (3+√3)/2
因此,a+c/b的取值为(1+√3)/2 + (3+√3)/2 = 2+√3
是a+c/b取值范围
# 根据余弦定理
根据余弦定理,有:$a^2 = b^2 + c^2 - 2bc \cos A$
将对边表示出来,得:$a^2 = (b+c)^2 - 4bc \sin^2(\frac{A}{2})$
因为 $\sin^2(\frac{A}{2}) = \frac{1-\cos A}{2}$
代入上式得:$a^2 = (b+c)^2 - 2bc(1+\cos A)$
同理可得 $c^2 = (a+b)^2 - 2ab(1+\cos C)$
将 $\frac{b+c}{a} = \cos C + \sqrt{3} \sin C$ 带入化简得:$\cos C = \frac{b+c}{a} - \sqrt{3} \sin C$
代入 $\cos A + \cos C = \frac{b}{a} + \frac{a}{c}$,整理得:$\cos A = \frac{b^2 + c^2 - a^2 + bc}{ac} (\sqrt{3} \sin C)$
同理可得 $\cos C = \frac{a^2 + b^2 - c^2 + ab}{ac} (\sqrt{3} \sin C)$
将 $\cos A$ 和 $\cos C$ 代入 $a^2$ 和 $c^2$ 的式子中,得:$a^2 = b^2 + bc + c^2 (1+\sqrt{3} \sin C)$
$c^2 = a^2 + ab + b^2 (1+\sqrt{3} \sin C)$
将 $c^2$ 和 $b^2$ 代入 $a^2$ 的式子中,得:$a^2 = (\frac{ab+ac+bc}{1+\sqrt{3} \sin C})$
代入 $\frac{a+c}{b} = \frac{a}{b} (\frac{a^2+ab+ac}{a^2+bc})$,得:$\frac{a+c}{b} = \frac{1+\sqrt{3} \sin C}{2}$
因此,$\frac{a+c}{b}$ 的取值范围为 $[ \frac{1}{2}, 1+\frac{\sqrt{3}}{2} ]$。