已知函数f(1-x)=x+x/(a+x),若对于任意x1,x2∈(-2,-1),都有[f(x1)-f(x2)]/(x1-x2)>-1,求a取值范围
1个回答
关注
展开全部
首先,将f(1-x)代换成x: f(1-x) = x + x/(a+x) 令y = 1 - x,则可以得到: f(y) = 1 - y + (1 - y) / (a + 1 - y) 根据题意,对于任意的x1, x2 ∈ (-2,-1),都有 [f(x1) - f(x2)] / (x1 - x2) > -1。 即: [f(x1) - f(x2)] / (x1 - x2) > -1 将x1和x2替换成y1 = 1 - x1,y2 = 1 - x2,有: [f(y1) - f(y2)] / (y1 - y2) > -1 展开化简,得到: [(1 - y1 + (1 - y1) / (a + 1 - y1)) - (1 - y2 + (1 - y2) / (a + 1 - y2))] / (y1 - y2) > -1 化简后得: [(y2 - y1) / (a + 1 - y1)(a + 1 - y2) + (y2 - y1) / (a + 1 - y1) + (y2 - y1) / (a + 1 - y2)] / (y1 - y2) > -1
咨询记录 · 回答于2023-07-13
已知函数f(1-x)=x+x/(a+x),若对于任意x1,x2∈(-2,-1),都有[f(x1)-f(x2)]/(x1-x2)>-1,求a取值范围
首先,将f(1-x)代换成x: f(1-x) = x + x/(a+x) 令y = 1 - x,则可以得到: f(y) = 1 - y + (1 - y) / (a + 1 - y) 根据题意,对于任意的x1, x2 ∈ (-2,-1),都有 [f(x1) - f(x2)] / (x1 - x2) > -1。 即: [f(x1) - f(x2)] / (x1 - x2) > -1 将x1和x2替换成y1 = 1 - x1,y2 = 1 - x2,有: [f(y1) - f(y2)] / (y1 - y2) > -1 展开化简,得到: [(1 - y1 + (1 - y1) / (a + 1 - y1)) - (1 - y2 + (1 - y2) / (a + 1 - y2))] / (y1 - y2) > -1 化简后得: [(y2 - y1) / (a + 1 - y1)(a + 1 - y2) + (y2 - y1) / (a + 1 - y1) + (y2 - y1) / (a + 1 - y2)] / (y1 - y2) > -1
将分子相同项进行合并,得: [(y2 - y1)(a + 1 - y1 + 1 + a + 1 - y2) + (y2 - y1)(a + 1 - y2 + 1) / [(a + 1 - y1)(a + 1 - y2)] / (y1 - y2) > -1 数量级化简为: 2(a + 1) / [(a + 1 - y1)(a + 1 - y2)] > -1 取消分母中的 (a + 1 - y1)(a + 1 - y2) 的符号,得: 2(a + 1)(a + 1 - y1)(a + 1 - y2) > -(a + 1)^2 化简为: 2(a + 1)(a + 1 - y1)(a + 1 - y2) + (a + 1)^2 > 0 展开化简,得到: 2a^3 + 3a^2 - 4a - 1 > 0 化简后得: (a + 1)(2a + 1)(a - 1) > 0 解此不等式,可以得到 a ∈ (-1/2, -1) 或 a > 1 所以,a取值范围为: a ∈ (-1/2, -1) 或 a > 1 。