2.如图,在+ABC+中,+AC=2ABcosBAC,+D为边CB延长线上一点,-|||-(1)求证:+sin2C=
1个回答
关注
展开全部
由题目可知:1.∠BAC + ∠CAD = 180°(+ABC+中角内合为180度)2.+AC=2ABcosBAC (+ABC+中余弦定理)对于(1),我们需要证明+sin2C= 。首先,由正弦定理可得:+AC/sin∠ABC = +BC/sin∠BAC即:+AC/sinC = +BC/sinB将+AC=2ABcosBAC代入上式,并将sinB化简为sin(180° - B - C),得到:2ABcosBAC/sinC = +BC/sin(180° - B - C)化简一下得:2ABcosBAC/sinC = +BC/sin(B + C)再将+BC用AB表示出来,即可得到:2cosBAC/sinC = sin(B + C)/sinB将左边的2cosBAC用sinC表示出来,得到:2sinBcosBAC = sin(B + C)/sinB移项,得到:2sinBcosBACsinB = sin(B + C)化简,得到:2cosBACcosC = sin(B + C)接下来,将左边的2cosBACcosC用余弦公式代入,得到:cos(B - C) +
咨询记录 · 回答于2023-03-31
2.如图,在+ABC+中,+AC=2ABcosBAC,+D为边CB延长线上一点,-|||-(1)求证:+sin2C=
由题目可知:1.∠BAC + ∠CAD = 180°(+ABC+中角内合为180度)2.+AC=2ABcosBAC (+ABC+中余弦定理)对于(1),我们需要证明+sin2C= 。首先,由正弦定理可得:+AC/sin∠ABC = +BC/sin∠BAC即:+AC/sinC = +BC/sinB将+AC=2ABcosBAC代入上式,并将sinB化简为sin(180° - B - C),得到:2ABcosBAC/sinC = +BC/sin(180° - B - C)化简一下得:2ABcosBAC/sinC = +BC/sin(B + C)再将+BC用AB表示出来,即可得到:2cosBAC/sinC = sin(B + C)/sinB将左边的2cosBAC用sinC表示出来,得到:2sinBcosBAC = sin(B + C)/sinB移项,得到:2sinBcosBACsinB = sin(B + C)化简,得到:2cosBACcosC = sin(B + C)接下来,将左边的2cosBACcosC用余弦公式代入,得到:cos(B - C) +
三角函数
可以写在纸上拍过来吗
这个很长
还在算
由题意可知,设∠ABC = A, ∠ACB = B,则∠BAC = 180° - A - B。根据正弦定理:sinA/AB = sinB/BC即:ABsinA = BCsinB又根据已知条件:AC = 2ABcosBAC所以:AC = 2ABcos(180° - A - B)化简得:AC = -2ABcos(A + B)所以:-AC/AB = 2cos(A + B)因为D是边CB的延长线上的一点,所以:∠DCB = 180° - ∠ACB化简得:∠DCB = A由正弦定理可得:sinC/BC = sinA/BD即:BDsinC = BCsinA将上式代入式子ABsinA = BCsinB,得:ABsinC = BDsinB又因为BD = BC + CD,所以:ABsinC = BCsinB + BCsinC化简得:ABsinC = BC(sinB + sinC)代入AC = 2ABcosBAC和∠BAC = 180° - A - B,得:cosBAC = -cos(A + B)化简得:sinBAC = sin(A + B)
还有这个
太长了
有点发不过来