求当n趋近无穷大时(1+2的n次方+3的n次方)的n分之一次方的极限,帮帮忙解一下,不知怎么解。。
1个回答
关注
展开全部
求当n趋近无穷大时(1+2的n次方+3的n次方)的n分之一次方的极限,帮帮忙解一下,不知怎么解。。。要有步骤
宛丘山人
2017-12-16
TA获得超过2.3万个赞
考虑函数y=ln(1+2^x+3^x)/x,用罗比达法则:
∵lim(x-->+∞)ln(1+2^x+3^x)/x
=lim(x-->+∞)(2^xln2+3^xln3)/(1+2^x+3^x)
=lim(x-->+∞)[2^x(ln2)^2+3^x(ln3)^2]/(2^xln2+3^xln3)
=lim(x-->+∞)[(2/3)^x(ln2)^2+(ln3)^2]/[(2/3)^xln2+ln3]
=(ln3)^2/ln3
=ln3
∴lim(x-->+∞)(1+2^x+3^x)^(1/x)=3
从而 lim(n-->+∞)(1+2^n+3^n)^(1/n)=3
咨询记录 · 回答于2021-10-09
求当n趋近无穷大时(1+2的n次方+3的n次方)的n分之一次方的极限,帮帮忙解一下,不知怎么解。。
求当n趋近无穷大时(1+2的n次方+3的n次方)的n分之一次方的极限,帮帮忙解一下,不知怎么解。。。要有步骤宛丘山人2017-12-16TA获得超过2.3万个赞考虑函数y=ln(1+2^x+3^x)/x,用罗比达法则:∵lim(x-->+∞)ln(1+2^x+3^x)/x=lim(x-->+∞)(2^xln2+3^xln3)/(1+2^x+3^x)=lim(x-->+∞)[2^x(ln2)^2+3^x(ln3)^2]/(2^xln2+3^xln3)=lim(x-->+∞)[(2/3)^x(ln2)^2+(ln3)^2]/[(2/3)^xln2+ln3]=(ln3)^2/ln3=ln3∴lim(x-->+∞)(1+2^x+3^x)^(1/x)=3从而 lim(n-->+∞)(1+2^n+3^n)^(1/n)=3
第三题 第五题 第六题谢谢
步骤在这里呢
没学洛必达法则
另外两道题能帮我解答一下吗
您复制给我就可以
您帮我看一下第二行和第三行怎么变换的??
除法求导就出来了
已赞过
评论
收起
你对这个回答的评价是?