高中数学知识点解答
1个回答
关注
展开全部
具体区别为:1、角度制,就是用角的大小来度量角的大小的方法。在角度制中,我们把周角的三百六十分之一看作1度,那么,半周就是180度,一周就是360度。由于1度的大小不因为圆的大小而改变,所以角度大小是一个与圆的半径无关的量;2、弧度制,就是用弧的长度来度量角的大小的方法。单位弧度定义为圆周上长度等于半径的圆弧与圆心构成的角。由于圆弧长短与圆半径之比,不因为圆的大小而改变,所以弧度数也是一个与圆的半径无关的量。角度以弧度给出时,通常不写弧度单位,有时记为rad或R。 根据弧度的定义,以长为圆周长(2πr)的弧所对的圆心角为2π 弧度,半个圆周长的弧所对的圆心角为π 弧度;3、角度与弧度间换算关系:因为360度=2π,所以1度等于180分之π,约等于0.01745弧度;1弧度等于180分之π,约等于57、3度。
咨询记录 · 回答于2022-10-15
高中数学知识点解答
弧度制 弧度数 弧度 ;角度制 角度 角度数有什么区别和包含关系?请您详细说明并逐一举例
你是哪个地区的教材信息呢,因为需要对口书籍知识给你讲
四川
四川人教版教材是吧
是的
具体区别为:1、角度制,就是用角的大小来度量角的大小的方法。在角度制中,我们把周角的三百六十分之一看作1度,那么,半周就是180度,一周就是360度。由于1度的大小不因为圆的大小而改变,所以角度大小是一个与圆的半径无关的量;2、弧度制,就是用弧的长度来度量角的大小的方法。单位弧度定义为圆周上长度等于半径的圆弧与圆心构成的角。由于圆弧长短与圆半径之比,不因为圆的大小而改变,所以弧度数也是一个与圆的半径无关的量。角度以弧度给出时,通常不写弧度单位,有时记为rad或R。 根据弧度的定义,以长为圆周长(2πr)的弧所对的圆心角为2π 弧度,半个圆周长的弧所对的圆心角为π 弧度;3、角度与弧度间换算关系:因为360度=2π,所以1度等于180分之π,约等于0.01745弧度;1弧度等于180分之π,约等于57、3度。