求此函数的微分 y=sinxy
1个回答
关注
展开全部
稍等
咨询记录 · 回答于2021-11-14
求此函数的微分 y=sinxy
稍等
解析:y=sin(xy)y'=cos(xy)●(xy)'y'=cos(xy)●(y+xy')y'[1-xcos(xy)]=ycos(xy)y'=ycos(xy)/[1-xcos(xy)]
怎么求的
第三步怎么来的
稍等
y=sin(xy)dy=d(xy)*cos(xy) =(ydx+xdy)cos(xy)dy-(xcos(xy))dy=ydx dy=y/[1-xcos(xy)] dx
看不懂啊
求此函数的微分 y=sinxyy=sin(xy)dy=d(xy)*cos(xy)=(ydx+xdy)cos(xy)dy-(xcos(xy))dy=ydxdy=y/[1-xcos(xy)] dx
带入即可
哪来的1啊
带入法
什么意思
稍等
解析:y=sin(xy)y'=cos(xy)●(xy)'y'=cos(xy)●(y+xy')y'[1-xcos(xy)]=ycos(xy)y'=ycos(xy)/[1-xcos(xy)]