咨询一个高数行列式的问题

1个回答
展开全部
摘要 就是行列式的子式。在n阶行列式中任选m行m列,其中m<=n,得到的行列式,就称为原行列式的子式。单选一个元素也能构成原行列式的一个子列,即取1行1列,得到一个1阶行列式,就是原行列式的一个1阶子式。而被选取的m阶子列除外的那些元素,构成了一个(m-n)阶子式,就称为这个m阶子列的余子式。这就是子列的余子式的概念,而当子式为1阶子式时,即该子式只有一个元素时,得到的余子式也可以称为是这个元素的余子式,这就是余子式的第二个概念。高等代数都是先学元素的余子式,再学子式的余子式的。加上“代数”两字的代数余子式,是余子式加上符号性质的概念。首先是元素的代数余子式符号问题,就是该元素的行号列号的和做为指数的-1的乘方。比如第三行第四列的元素a34的余子式的符号性质,就是(-1)的(3+4)次方,即符号性质是负的。这时余子式和代数余子式的符号是相反的。需要注意的是,余子式的值未必是正数,如果余子式的值是负的,那么代数余子式的值就反而是正的。
咨询记录 · 回答于2023-01-21
咨询一个高数行列式的问题
亲亲您的问题是
说明一下详细过程
答案如图所示
可以说明一下每步是怎么变的吗?余子式还有别的还没有学完,不是很懂
就是行列式的子式。在n阶行列式中任选m行m列,其中m<=n,得到的行列式,就称为原行列式的子式。单选一个元素也能构成原行列式的一个子列,即取1行1列,得到一个1阶行列式,就是原行列式的一个1阶子式。而被选取的m阶子列除外的那些元素,构成了一个(m-n)阶子式,就称为这个m阶子列的余子式。这就是子列的余子式的概念,而当子式为1阶子式时,即该子式只有一个元素时,得到的余子式也可以称为是这个元素的余子式,这就是余子式的第二个概念。高等代数都是先学元素的余子式,再学子式的余子式的。加上“代数”两字的代数余子式,是余子式加上符号性质的概念。首先是元素的代数余子式符号问题,就是该元素的行号列号的和做为指数的-1的乘方。比如第三行第四列的元素a34的余子式的符号性质,就是(-1)的(3+4)次方,即符号性质是负的。这时余子式和代数余子式的符号是相反的。需要注意的是,余子式的值未必是正数,如果余子式的值是负的,那么代数余子式的值就反而是正的。
下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消