∫(x-2)/[(2x^2+2x+1)^2]dx
1个回答
关注
展开全部
∫{1/[x^2(2x^2-2x+1)^2]}dx ?
若是这样,则方法如下:
令1/x=u,则x=1/u, ∴dx=-(1/u^2)du。
∴原式=∫{1/[(1/u^2)(2/u^2-2/u+1)^2]}[-(1/u^2)]du
=-∫[u^2/(2-2u+u^2)^2]du
=-∫[(u^2-2u+2+2u-2)/(u^2-2u+2)^2]du
=-∫[1/(u^2-2u+2)]du+2∫[(u-1)/(u^2-2u+2)^2]du
=-∫{1/[(u-1)^2+1]}d(u-1)+2∫{(u-1)/[(u-1)^2+1]}d(u-1)
=-arctan(u-1)+∫{1/[(u-1)^2+1]}d(u-1)^2
=-arctan(1/x-1)+ln|(u-1)^2+1|+C
=-arctan(1/x-1)+ln|(1/x-1)^2+1|+C
咨询记录 · 回答于2021-11-30
∫(x-2)/[(2x^2+2x+1)^2]dx
稍等
∫{1/[x^2(2x^2-2x+1)^2]}dx ?若是这样,则方法如下:令1/x=u,则x=1/u, ∴dx=-(1/u^2)du。∴原式=∫{1/[(1/u^2)(2/u^2-2/u+1)^2]}[-(1/u^2)]du =-∫[u^2/(2-2u+u^2)^2]du =-∫[(u^2-2u+2+2u-2)/(u^2-2u+2)^2]du =-∫[1/(u^2-2u+2)]du+2∫[(u-1)/(u^2-2u+2)^2]du =-∫{1/[(u-1)^2+1]}d(u-1)+2∫{(u-1)/[(u-1)^2+1]}d(u-1) =-arctan(u-1)+∫{1/[(u-1)^2+1]}d(u-1)^2 =-arctan(1/x-1)+ln|(u-1)^2+1|+C =-arctan(1/x-1)+ln|(1/x-1)^2+1|+C
已赞过
评论
收起
你对这个回答的评价是?