函数在闭区间范围之内有界,为什么不能说明,它一定可积呢

1个回答
展开全部
摘要 闭区间上有限个间断点的有界函数是可积的,但只说闭区间上的有界函数是不一定可积的。
在闭区间上一个单元函数满足后者一定可以推出其也满足前面的系列性质,即闭区间上,从后往前推可以,但从前往后推,未必。具体表现为可导一定连续,可导一定可积,可导一定有界,连续一定可积,连续一定有界,可积一定有界。
咨询记录 · 回答于2021-12-04
函数在闭区间范围之内有界,为什么不能说明,它一定可积呢
闭区间上有限个间断点的有界函数是可积的,但只说闭区间上的有界函数是不一定可积的。
在闭区间上一个单元函数满足后者一定可以推出其也满足前面的系列性质,即闭区间上,从后往前推可以,但从前往后推,未必。具体表现为可导一定连续,可导一定可积,可导一定有界,连续一定可积,连续一定有界,可积一定有界。
叫你举个例子
举例 一般来说连续函数在闭区间具有有界性。例如:y=x+6在[1,2]上有最小值7,最大值8,所以说它的函数值在7和8之间变化是有界的,所以具有有界性。但正切函数在有意义区间比如【-丌/2,丌/2】内则无界。
下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消