设y=sin(x + y),求d²y/dx²
1个回答
关注
展开全部
因为y=sin(x + y)所以dy/dx=cos(x+y)(1+dy/dx)
咨询记录 · 回答于2022-09-11
设y=sin(x + y),求d²y/dx²
好的
稍微快一点
因为y=sin(x + y)所以dy/dx=cos(x+y)(1+dy/dx)
dy/dx=cos(x+y)/(1-cos(x+y))
d²y/dx²=-sin(x+y)(1+dy/dx)(1-cos(x+y))-cos(x+y)(sin(x+y)(1+dy/dx)/(1-cos(x+y))²
=-sin(x+y)(1+cos(x+y)/(1-cos(x+y))(1-cos(x+y))-cos(x+y)(sin(x+y)(1+dy/cos(x+y)/(1-cos(x+y))))/(1-cos(x+y)²
写的认不得
最后答案d²y/dx²=-sin(x+y)
能用纸写拍照片吗
不好意思,手边没有纸,抱歉