数学在线咨询

1个回答
展开全部
摘要 >>已知正项数列{a}的前n项和为Sn且a¬n2+2an-n=2Sn(1) 求数列{a}的通项公式(2) 设bn=2an-1,若数列{cn}满足cn=bn+1除于bn乘bn+1,求证c1+c2+…+cn小于1 计算过程(1)设数列{a}的通项公式为an=f(n),则有a1=f(1)a2=f(2)⋯an=f(n)将其代入an2+2an-n=2Sn,得f(1)2+2f(1)-1=2S1f(2)2+2f(2)-2=2S2⋯f(n)2+2f(n)-n=2Sn令f(n)=x,则有x2+2x-1=2S1x2+2x-2=2S2⋯x2+2x-n=2Sn将上式化为一元二次方程,得x2+2x-2Sn+n2=0解得x=Sn-n±√(Sn2-2Sn+n2)由于an=f(n),所以an=Sn-n±√(Sn2-2Sn+n2)即数列{a}的通项公式为an=Sn-n±√(Sn2-2Sn+n2)(2)设bn=2an-1,则有b1=2a1-1b2=2a2-1⋯bn=2an-1将其代入an=Sn-n±√(Sn
咨询记录 · 回答于2023-01-05
数学在线咨询
过程,谢谢
这三个选哪一个都行吗?
对的
>>已知正项数列{a}的前n项和为Sn且a¬n2+2an-n=2Sn(1) 求数列{a}的通项公式(2) 设bn=2an-1,若数列{cn}满足cn=bn+1除于bn乘bn+1,求证c1+c2+…+cn小于1 计算过程(1)设数列{a}的通项公式为an=f(n),则有a1=f(1)a2=f(2)⋯an=f(n)将其代入an2+2an-n=2Sn,得f(1)2+2f(1)-1=2S1f(2)2+2f(2)-2=2S2⋯f(n)2+2f(n)-n=2Sn令f(n)=x,则有x2+2x-1=2S1x2+2x-2=2S2⋯x2+2x-n=2Sn将上式化为一元二次方程,得x2+2x-2Sn+n2=0解得x=Sn-n±√(Sn2-2Sn+n2)由于an=f(n),所以an=Sn-n±√(Sn2-2Sn+n2)即数列{a}的通项公式为an=Sn-n±√(Sn2-2Sn+n2)(2)设bn=2an-1,则有b1=2a1-1b2=2a2-1⋯bn=2an-1将其代入an=Sn-n±√(Sn
好的
(2)设bn=2an-1,则有b1=2a1-1b2=2a2-1bn=2an-1将其代入an=Sn-n±√(Sn2-2Sn+n2),得b1=2(Sn-1±√(Sn2-2Sn+1))-1b2=2(Sn-2±√(Sn2-2Sn+4))-1bn=2(Sn-n±√(Sn2-2Sn+n2))-1设cn=bn+1除于bn乘bn+1,则有c1=b1+1除于b1乘b1+1c2=b2+1除于b2乘b2+1cn=bn+1除于bn乘bn+1将其代入b1=2(Sn-1±√(Sn2-2Sn+1))-1,得c1=2(Sn-1±√(Sn2-2Sn+1))除于2(Sn-1±√(Sn2-2Sn+1))-1乘2(Sn-1±√(Sn2-2Sn+1))将其代入b2=2(Sn-2±√(Sn2-2Sn+4))-1,得c2=2(Sn-2±√(Sn2-2Sn+4))除于2(Sn-2±√(Sn2-2Sn+4))-1乘2(Sn-2±√(Sn2-2Sn+4))将其代入bn=2(Sn-n±√(Sn2-2Sn+n2))-1,得cn=2(Sn-n±√(Sn2-2Sn+n2))除于2(Sn-n±√(Sn2-2Sn+n
cn=2(Sn-n±√(Sn2-2Sn+n2))除于2(Sn-n±√(Sn2-2Sn+n2))-1乘2(Sn-n±√(Sn2-2Sn+n2))即cn=1±√(1-4(Sn2-2Sn+n2))除于2(Sn-n±√(Sn2-2Sn+n2))由于Sn2-2Sn+n2>0,所以c1+c2+…+cn=n±√(1-4(Sn2-2Sn+n2))除于2(Sn-n±√(Sn2-2Sn+n2))又由于Sn2-2Sn+n2<1,所以c1+c2+…+cn0,所以c1+c2+…+cn<1即c1+c2+…+cn小于1综上所述,证毕。
OK
下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消