1+3+5+7加再加加47+49+51有合适的方法计算
1个回答
关注
展开全部
亲、答案是676。这是一个等差数列,公差为2,首项为1,末项为51。因此可以使用等差数列求和公式来计算:设该等差数列的和为S,则S = (首项 + 末项) × 项数 ÷ 2其中,项数n可以通过末项减去首项再除以公差加1得到:n = (末项 - 首项) ÷ 公差 + 1将公式代入原式中,得到:S = (1 + 51) × [(51 - 1) ÷ 2 ÷ 2 + 1] ÷ 2 = 676因此,1+3+5+7+……47+49+51的和为676。
咨询记录 · 回答于2023-03-12
1+3+5+7加再加加47+49+51有合适的方法计算
亲亲,这个问题不太清楚,能否提供更多的背景信息或上下文呢?
1+3+5+7+47+49+51?
8题第一个
你好亲,可以转换成文字吗?因为我这边打不开图片,发的图片只显示一个叉
?能看明白吗
1+3+5+7+……47+49+51有合适的方法计算?
对,是这个题
亲、答案是676。这是一个等差数列,公差为2,首项为1,末项为51。因此可以使用等差数列求和公式来计算:设该等差数列的和为S,则S = (首项 + 末项) × 项数 ÷ 2其中,项数n可以通过末项减去首项再除以公差加1得到:n = (末项 - 首项) ÷ 公差 + 1将公式代入原式中,得到:S = (1 + 51) × [(51 - 1) ÷ 2 ÷ 2 + 1] ÷ 2 = 676因此,1+3+5+7+……47+49+51的和为676。
亲,还有什么其他要问的吗?