高一函数问题

1个回答
展开全部
摘要 1、复合函数为两个增函数复合:那么随着自变量X的增大,Y值也在不断的增大。2、复合函数为两个减函数的复合:那么随着内层函数自变量X的增大,内层函数的Y值就在不断的减小,而内层函数的Y值就是整个复合函数的自变量X。因此,即当内层函数自变量X的增大时,内层函数的Y值就在不断的减小,即整个复合函数的自变量X不断减小,又因为外层函数也为减函数,所以整个复合函数的Y值就在增大。因此可得“同增” 若复合函数为一增一减两个函数复合:内层函数为增函数,则若随着内层函数自变量X的增大,内层函数的Y值也在不断的增大,即整个复合函数的自变量X不断增大,又因为外层函数为减函数,所以整个复合函数的Y值就在减小。反之亦然,因此可得“异减”。
咨询记录 · 回答于2023-01-06
高一函数问题
y=a^x 如果a>1,则函数单调递增,如果0
1、复合函数为两个增函数复合:那么随着自变量X的增大,Y值也在不断的增大。2、复合函数为两个减函数的复合:那么随着内层函数自变量X的增大,内层函数的Y值就在不断的减小,而内层函数的Y值就是整个复合函数的自变量X。因此,即当内层函数自变量X的增大时,内层函数的Y值就在不断的减小,即整个复合函数的自变量X不断减小,又因为外层函数也为减函数,所以整个复合函数的Y值就在增大。因此可得“同增” 若复合函数为一增一减两个函数复合:内层函数为增函数,则若随着内层函数自变量X的增大,内层函数的Y值也在不断的增大,即整个复合函数的自变量X不断增大,又因为外层函数为减函数,所以整个复合函数的Y值就在减小。反之亦然,因此可得“异减”。
首先,y=a^x是指数函数,我们一般讨论a>0,且a≠1的情况。当指数α是负整数时,设α=-k,则,显然x≠0,函数的定义域是(-∞,0)∪(0,+∞)。因此可以看到x所受到的限制来源于两点:一是有可能作为分母而不能是0。一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:α小于0时,x不等于0;α的分母为偶数时,x不小于0;α的分母为奇数时,x取R。
单调区间:当α为整数时,α的正负性和奇偶性决定了函数的单调性。①当α为正奇数时,图像在定义域为R内单调递增。②当α为正偶数时,图像在定义域为第二象限内单调递减,在第一象限内单调递增。③当α为负奇数时,图像在第一三象限各象限内单调递减(但不能说在定义域R内单调递减)。④当α为负偶数时,图像在第二象限上单调递增,在第一象限内单调递减。当α为分数时(且分子为1),α的正负性和分母的奇偶性决定了函数的单调性。
下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消