(六)(10分)设Ω为由曲面 z=√(x^2+y^2) xy=1,xy=2,y=3x,y=4x,z=0所围成的立体,体密度 μ=xyz ,试求立体Ω的质量M.

1个回答
展开全部
摘要 数学解题方法总结:1、直接法:根据选择题的题设条件,通过计算、推理或判断,,最后得到题目的所求。2、特殊值法:(特殊值淘汰法)有些选择题所涉及的数学命题与字母的取值范围有关;在解这类选择题时,可以考虑从取值范围内选取某几个特殊值,代入原命题进行验证,然后淘汰错误的,保留正确的。3、淘汰法:把题目所给的四个结论逐一代回原题的题干中进行验证,把错误的淘汰掉,直至找到正确的答案。4、逐步淘汰法:如果我们在计算或推导的过程中不是一步到位,而是逐步进行,既采用“走一走、瞧一瞧”的策略;每走一步都与四个结论比较一次,淘汰掉不可能的,这样也许走不到最后一步,三个错误的结论就被全部淘汰掉了。5、数形结合法:根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解题思路,使问题得到解决
咨询记录 · 回答于2023-02-21
(六)(10分)设Ω为由曲面 z=√(x^2+y^2) xy=1,xy=2,y=3x,y=4x,z=0所围成的立体,体密度 μ=xyz ,试求立体Ω的质量M.
解:由曲面 z=√(x^2+y^2) xy=1,xy=2,y=3x,y=4x,z=0所围成的立体Ω的体积V为:$$V = \int_{-1}^{1}\int_{3x}^{4x}\int_{0}x^2+y^2}}dzdydx = \frac{8}{15}故立体Ω的质量M为:M = mu V ={8xyz}{15}
数学解题方法总结:1、直接法:根据选择题的题设条件,通过计算、推理或判断,,最后得到题目的所求。2、特殊值法:(特殊值淘汰法)有些选择题所涉及的数学命题与字母的取值范围有关;在解这类选择题时,可以考虑从取值范围内选取某几个特殊值,代入原命题进行验证,然后淘汰错误的,保留正确的。3、淘汰法:把题目所给的四个结论逐一代回原题的题干中进行验证,把错误的淘汰掉,直至找到正确的答案。4、逐步淘汰法:如果我们在计算或推导的过程中不是一步到位,而是逐步进行,既采用“走一走、瞧一瞧”的策略;每走一步都与四个结论比较一次,淘汰掉不可能的,这样也许走不到最后一步,三个错误的结论就被全部淘汰掉了。5、数形结合法:根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解题思路,使问题得到解决
下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消