若n元线性方程组有解,且其系数矩阵的行列式一定不等于零

1个回答
展开全部
摘要 线性方程也称一次方程式。指未知数都是一次的方程。其一般的形式是ax+by+...+cz+d=0。线性方程的本质是等式两边乘以任何相同的非零数,方程的本质都不受影响。
因为在笛卡尔坐标系上任何一个一次方程的表示都是一条直线。组成一次方程的每个项必须是常数或者是一个常数和一个变量的乘积。且方程中必须包含一个变量,因为如果没有变量只有常数的式子是代数式而非方程式。
咨询记录 · 回答于2022-01-03
若n元线性方程组有解,且其系数矩阵的行列式一定不等于零
您好,我这边正在为您查询,请稍等片刻,我这边马上回复您~
很高兴为您解答,这两种说法并不矛盾。 “如果齐次线性方程组的系数行列式不等于零,则它没有非零解”,就是说,它的解也是唯一的,这个“唯一的解”是零解。 比如 Ax=b,若 b≠0,则为“非齐次线性方程组”,当│A│≠0 时,有唯一解(这个解不为零); 若 b=0,则 Ax=b 是齐次线性方程组,当│A│≠0 时,有唯一解;而 A·0=0, 所以这个解就是 x=0。
总而言之,这两种说法是统一的,并不矛盾,后一种说法是前一种说法的特殊情况,这两种说法可以合为一种说法,那就是“若线性方程组 Ax=b 的系数行列式│A│≠0,那么方程组有唯一解:当b≠0 时,这个解是非零解;当b=0 时,这个解是零解”
希望以上回答对您有所帮助~ 如果您对我的回答满意的话,麻烦给个赞哦~
线性方程也称一次方程式。指未知数都是一次的方程。其一般的形式是ax+by+...+cz+d=0。线性方程的本质是等式两边乘以任何相同的非零数,方程的本质都不受影响。因为在笛卡尔坐标系上任何一个一次方程的表示都是一条直线。组成一次方程的每个项必须是常数或者是一个常数和一个变量的乘积。且方程中必须包含一个变量,因为如果没有变量只有常数的式子是代数式而非方程式。
那么这句话是对的?
这两种说法是统一的,并不矛盾,后一种说法是前一种说法的特殊情况,这两种说法可以合为一种说法,那就是“若线性方程组 Ax=b 的系数行列式│A│≠0,那么方程组有唯一解:当b≠0 时,这个解是非零解;当b=0 时,这个解是零解”
下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消