泰勒级数常用公式

1个回答
白果老师
2023-03-23 · TA获得超过51.9万个赞
知道小有建树答主
回答量:3717
采纳率:100%
帮助的人:54.5万
展开全部
泰勒级数常用公式是:

泰勒公式是将一个在x=x0处具有n阶导数的函数f(x)利用关于(x-x0)的n次多项式来逼近函数的方法。若函数f(x)在包含x0的某个闭区间【a,b】上具有n阶导数,且在开区间(a,b)上具有(n+1)阶导数,则对闭区间【a,b】上任意一点x,成立,其中,表示f(x)的n阶导数,等号后的多项式称为函数f(x)在x0处的泰勒展开式,剩余的Rn(x)是泰勒公式的余项,是(x-x0)n的高阶无穷小。

泰勒公式的概念:

对于满足适当可微性条件的函数,可以用多项式近似地表示这个函数。用多项式近似地表示函数的公式称为泰勒公式,并且根据余项表达式的不同而有不同的形式。得名于英国数学家布鲁克•泰勒,他在1712年的一封信里首次叙述了这个公式。它来自于微积分的泰勒定理,如果函数足够光滑的话,在已知函数在某一点的各阶导数值的情况之下,泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中的值。

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消