函数f(x)=e^-x+2x+1的单调增区间
1个回答
关注
展开全部
是(1/ln2,+∞)
咨询记录 · 回答于2023-04-24
函数f(x)=e^-x+2x+1的单调增区间
函数f(x)=e^-x+2x+1的单调增区间
是(1/ln2,+∞)
函数f(x)=e^-x+2x+1的单调增区间解题因为f(x)=e^-x+2x+1所以f’(x)=-e⁻ˣ+2令f’(x)=0既-e⁻ˣ+2=0解得x=1/ln2所以f(x)的单调递增区间是(1/ln2,+∞)
函数f(x)=e^-x+2x+1的单调增区间解题因为f(x)=e^-x+2x+1所以f’(x)=-e⁻ˣ+2令f’(x)=0既-e⁻ˣ+2=0解得x=1/ln2所以f(x)的单调递增区间是(1/ln2,+∞)