有一个解释变量显著不等于多元线性回归模型的方程显著
1个回答
关注
展开全部
第一,在一元线性回归的情况下,由于只有一个系数需要检验,所以回归方程的F检验与系数的T检验的结果是一直的。
第二,在多元线性回归的情况下,方程总体的线性关系检验不一定与回归系数检验结果一致。通常的情况是,方程的总体线性关系是显著的,但是某个变量的影响却并不显著。
因为,方程总体的线性关系显著性F检验的备择假设是估计参数不全为0,所以当某个参数的t检验通过(即拒绝零假设,参数不为0),则很可能影响到总体线性检验拒绝零假设。
回归模型(regression model)对统计关系进行定量描述的一种数学模型。如多元线性回归的数学模型可以表示为y=β0+β1*x+εi,式中,β0,β1,…,βp是p+1个待估计的参数,εi是相互独立且服从同一正态分布N(0,σ2)的随机变量,y是随机变量;x可以是随机变量,也可以是非随机变量,βi称为回归系数,表征自变量对因变量影响的程度。
咨询记录 · 回答于2021-12-26
有一个解释变量显著不等于多元线性回归模型的方程显著
第一,在一元线性回归的情况下,由于只有一个系数需要检验,所以回归方程的F检验与系数的T检验的结果是一直的。第二,在多元线性回归的情况下,方程总体的线性关系检验不一定与回归系数检验结果一致。通常的情况是,方程的总体线性关系是显著的,但是某个变量的影响却并不显著。因为,方程总体的线性关系显著性F检验的备择假设是估计参数不全为0,所以当某个参数的t检验通过(即拒绝零假设,参数不为0),则很可能影响到总体线性检验拒绝零假设。回归模型(regression model)对统计关系进行定量描述的一种数学模型。如多元线性回归的数学模型可以表示为y=β0+β1*x+εi,式中,β0,β1,…,βp是p+1个待估计的参数,εi是相互独立且服从同一正态分布N(0,σ2)的随机变量,y是随机变量;x可以是随机变量,也可以是非随机变量,βi称为回归系数,表征自变量对因变量影响的程度。
那这句话到底是对的还是错误的呢
根据您的描述,t检验可能影响F检验,但是题目说的是等于,而且是在多元回归方程中
多元线性回归模型中,如果方程的总体线性关系是显著的,并不能说明每个解释变量对被解释变量的影响都是显著的,必须对每个解释变量进行显著性检验
已赞过
评论
收起
你对这个回答的评价是?