4.设 f(x)=x/(1+x^2)+arctanx, (1)将f(x)展开成x的幂级数;(2)求f(23)(0).
1个回答
关注
展开全部
亲您好,(1)对于第一项,用幂级数展开公式:$$\frac{x}{1+x^2}=x\cdot\frac{1}{1-(-x^2)}=\sum_{n=0}^\infty(-1)^nx^{2n+1}$$对于第二项,用幂级数展开公式:$$\arctanx=\sum_{n=0}^\infty(-1)^n\frac{x^{2n+1}}{2n+1}$$所以,$$f(x)=\sum_{n=0}^\infty(-1)^nx^{2n+1}+\sum_{n=0}^\infty(-1)^n\frac{x^{2n+1}}{2n+1}=\sum_{n=0}^\infty(-1)^nx^{2n+1}\left(1+\frac{1}{2n+1}\right)$$(2)将$x=23$代入幂级数展开式,得$$f(23)=\sum_{n=0}^\infty(-1)^{n+1}\left(\frac{23}{\sqrt{2}}\right)^{2n+1}\left(1+\frac{1}{2n+1}\right)$$该级数是交错级数,可以使用交错级数估值法。由于$$\lim_{n\to\infty}\left(\frac{23}{\sqrt{2}}\right)^{2n+1}\left(1+\frac{1}{2n+1}\right)=0$$所以$f(23)$的误差不超过剩余项的第一项,即$$\left|\frac{(-1)^{n+1}\left(\frac{23}{\sqrt{2}}\right)^{2n+3}\left(1+\frac{1}{2n+3}\right)}{(-1)^n\left(\frac{23}{\sqrt{2}}\right)^{2n+1}\left(1+\frac{1}{2n+1}\right)}|=\frac{23^2}{2n+3}\leq\frac{23^2}{3}<200$$因此,保留前三项即可得到$f(23)$的近似值:$$f(23)\approx\sum_{n=0}^2(-1)^{n+1}\left(\frac{23}{\sqrt{2}}\right)^{2n+1}\left(1+\frac{1}{2n+1}\right)=-\frac{529\sqrt{2}}{961}+\frac{529\sqrt{2}}{881}-\frac{529\sqrt{2}}{723}\approx0.5395.$$
咨询记录 · 回答于2023-06-08
4.设 f(x)=x/(1+x^2)+arctanx, (1)将f(x)展开成x的幂级数;(2)求f(23)(0).
亲您好,(1)对于第一项,用幂级数展开公式:$$\frac{x}{1+x^2}=x\cdot\frac{1}{1-(-x^2)}=\sum_{n=0}^\infty(-1)^nx^{2n+1}$$对于第二项,用幂级数展开公式:$$\arctanx=\sum_{n=0}^\infty(-1)^n\frac{x^{2n+1}}{2n+1}$$所以,$$f(x)=\sum_{n=0}^\infty(-1)^nx^{2n+1}+\sum_{n=0}^\infty(-1)^n\frac{x^{2n+1}}{2n+1}=\sum_{n=0}^\infty(-1)^nx^{2n+1}\left(1+\frac{1}{2n+1}\right)$$(2)将$x=23$代入幂级数展开式,得$$f(23)=\sum_{n=0}^\infty(-1)^{n+1}\left(\frac{23}{\sqrt{2}}\right)^{2n+1}\left(1+\frac{1}{2n+1}\right)$$该级数是交错级数,可以使用交错级数估值法。由于$$\lim_{n\to\infty}\left(\frac{23}{\sqrt{2}}\right)^{2n+1}\left(1+\frac{1}{2n+1}\right)=0$$所以$f(23)$的误差不超过剩余项的第一项,即$$\left|\frac{(-1)^{n+1}\left(\frac{23}{\sqrt{2}}\right)^{2n+3}\left(1+\frac{1}{2n+3}\right)}{(-1)^n\left(\frac{23}{\sqrt{2}}\right)^{2n+1}\left(1+\frac{1}{2n+1}\right)}|=\frac{23^2}{2n+3}\leq\frac{23^2}{3}<200$$因此,保留前三项即可得到$f(23)$的近似值:$$f(23)\approx\sum_{n=0}^2(-1)^{n+1}\left(\frac{23}{\sqrt{2}}\right)^{2n+1}\left(1+\frac{1}{2n+1}\right)=-\frac{529\sqrt{2}}{961}+\frac{529\sqrt{2}}{881}-\frac{529\sqrt{2}}{723}\approx0.5395.$$
能换成能看的懂得数学语言吗
(1)f(x)=x-x^3/3+x^5/5-x^7/7+x^9/9-x^11/11+...+arctanx(2)f(23)=23-23^3/3+23^5/5-23^7/7+23^9/9-23^11/11+...+arctan23≈-0.907