已知函数f(x)=x+4/x x属于[1,3] 判断f(x)在[1,2]和[2,3]上的单调性 求f(x)的最值
展开全部
已知函数f(x)=x+4/x
x属于[1,3]
判断f(x)在[1,2]和[2,3]上的单调性
求f(x)的最值
解:易知函数定义域为x≠0
令x2>x1
f(x2)-f(x1)=x2+4/x2-x1-4/x1
=(x2-x1)(1-4/x1x2)
令x1=x2=x,并令1-4/x1x2=0
解得:x=2或-2
则函数单调性需在以下四个区间来讨论:
(-∞,-2],[-2,0),(0,2],[2,+
∞)
当x∈(-∞,-2]时,x2-x1>0,1-4/x1x2>0,则f(x2)-f(x1)>0,函数为增函数;
当x∈[-2,0)时,x2-x1>0,
1-4/x1x2<0,则f(x2)-f(x1)<0,函数为减函数;
当x∈(0,2]时,x2-x1>0,1-4/x1x2<0,则f(x2)-f(x1)<0,函数为减函数;
当x∈[2,+
∞)时,x2-x1>0,1-4/x1x2>0,则f(x2)-f(x1)>0,函数为增函数。
根据上面的推算过程可知当x∈[1,2]时,函数单调递减;
当x∈[2,3]时,函数单调递增;
则当x∈[1,3]时,函数存在最小值,最小值为f(2)=2+4/2=4
如果你认可我的答案,请点击下面的‘选为满意回答’按钮,谢谢!
x属于[1,3]
判断f(x)在[1,2]和[2,3]上的单调性
求f(x)的最值
解:易知函数定义域为x≠0
令x2>x1
f(x2)-f(x1)=x2+4/x2-x1-4/x1
=(x2-x1)(1-4/x1x2)
令x1=x2=x,并令1-4/x1x2=0
解得:x=2或-2
则函数单调性需在以下四个区间来讨论:
(-∞,-2],[-2,0),(0,2],[2,+
∞)
当x∈(-∞,-2]时,x2-x1>0,1-4/x1x2>0,则f(x2)-f(x1)>0,函数为增函数;
当x∈[-2,0)时,x2-x1>0,
1-4/x1x2<0,则f(x2)-f(x1)<0,函数为减函数;
当x∈(0,2]时,x2-x1>0,1-4/x1x2<0,则f(x2)-f(x1)<0,函数为减函数;
当x∈[2,+
∞)时,x2-x1>0,1-4/x1x2>0,则f(x2)-f(x1)>0,函数为增函数。
根据上面的推算过程可知当x∈[1,2]时,函数单调递减;
当x∈[2,3]时,函数单调递增;
则当x∈[1,3]时,函数存在最小值,最小值为f(2)=2+4/2=4
如果你认可我的答案,请点击下面的‘选为满意回答’按钮,谢谢!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询