记三角形abc的内角ABC的对边分别为abc+c=π/3,c=√21cosB=√21/7求面积
1个回答
关注
展开全部
AB² = AC² + BC² - 2AC·BC·cos∠ABC= (√21)² + c² - 2√21·c·cosB= 21 + c² - 2√21·c·cosBAC² = AB² + BC² - 2AB·BC·cos∠ACB= (√21)² + c² - 2√21·c·cos(π/3 - B)= 21 + c² - √21·c·cosB将c=√21cosB=√21/7代入上式,得到:AB² = 21 + 21/49 - 2√21/7·cosB= 21·48/49 - 2√21/7·√(1 - sin²B)= 21·48/49 - 2√21/7·√(1 - 21/147)≈ 9.142AC² = 21 + 21/49 - √21/7·cosB= 21·48/49 - √21/7·√(1 - sin²(π/3 - arcsin(√21/7)))= 21·48/49 - √21/7·√(1 - 21/49)≈
咨询记录 · 回答于2023-03-05
记三角形abc的内角ABC的对边分别为abc+c=π/3,c=√21cosB=√21/7求面积
AB² = AC² + BC² - 2AC·BC·cos∠ABC= (√21)² + c² - 2√21·c·cosB= 21 + c² - 2√21·c·cosBAC² = AB² + BC² - 2AB·BC·cos∠ACB= (√21)² + c² - 2√21·c·cos(π/3 - B)= 21 + c² - √21·c·cosB将c=√21cosB=√21/7代入上式,得到:AB² = 21 + 21/49 - 2√21/7·cosB= 21·48/49 - 2√21/7·√(1 - sin²B)= 21·48/49 - 2√21/7·√(1 - 21/147)≈ 9.142AC² = 21 + 21/49 - √21/7·cosB= 21·48/49 - √21/7·√(1 - sin²(π/3 - arcsin(√21/7)))= 21·48/49 - √21/7·√(1 - 21/49)≈
≈ 8.142因此,AB≈3.02,AC≈2.85。接下来,我们可以利用正弦定理求出角A的正弦值sinA:sinA/AB = sin(π/3 - B)/ACsinA = AB·sin(π/3 - B)/AC≈ 0.866因此,三角形的高h等于AB·sinA≈2.62。最后,根据三角形面积公式,三角形的面积为:S = AB·h/2≈ 3.98因此,三角形的面积约为3.98平方单位。