二阶常数非齐次微分方程特解怎么设
1个回答
展开全部
二阶常系数非齐次线性微分方程的表达式为y+py+qy=f(x),其特解y*设法分为两种。
1、如果f(x)=P(x),Pn(x)为n阶多项式。
2、如果f(x)=P(x)e^αx,Pn(x)为n阶多项式。
特解y*设法:
1、如果f(x)=P(x),Pn(x)为n阶多项式。
若0不是特征值,在令特解y*=x^k*Qm(x)*e^λx中,k=0,λ=0;因为Qm(x)与Pn(x)为同次的多项式,所以Qm(x)设法要根据Pn(x)的情况而定。
2、如果f(x)=P(x)e^αx,Pn(x)为n阶多项式。
若α不是特征值,在令特解y*=x^k*Qm(x)*e^αx中,k=0,即y*=Qm(x)*e^αx,Qm(x)设法要根据Pn(x)的情况而定。
本回答由夕资工业设备(上海)提供