n(n-1)z^n的收敛半径

1个回答
展开全部
摘要 亲亲,非常荣幸为您解答n(n-1)z^n的收敛半径:1. 收敛半径r是一个非负的实数或无穷大的数,使得在 | z -a| r时幂级数收敛,在 | z -a| > r时幂级数发散。具体来说,当 z和 a足够接近时,幂级数就会收敛,反之则会发散。收敛半径就是收敛区域和发散区域的分界线。在 |z- a| = r的收敛圆上,幂级数的敛散性是不确定的:对某些 z可能收敛,对其它的则发散。如果幂级数对所有复数 z都收敛,那么说收敛半径是无穷大。
咨询记录 · 回答于2023-05-30
n(n-1)z^n的收敛半径
亲亲,非常荣幸为您解答n(n-1)z^n的收敛半径:1. 收敛半径r是一个非负的实数或无穷大的数,使得在 | z -a| r时幂级数收敛,在 | z -a| > r时幂级数发散。具体来说,当 z和 a足够接近时,幂级数就会收敛,反之则会发散。收敛半径就是收敛区域和发散区域的分界线。在 |z- a| = r的收敛圆上,幂级数的敛散性是不确定的:对某些 z可能收敛,对其它的则发散。如果幂级数对所有复数 z都收敛,那么说收敛半径是无穷大。
相关拓展:收敛半径基本内容:根据根值审敛法,则有柯西-阿达马公式。或者,复分析中的收敛半径将一个收敛半径是正数的幂级数的变量取为复数,就可以定义一个全纯函数。收敛半径可以被如下定理刻画:一个中心为 a的幂级数 的收敛半径 R等于 a与离 a最近的使得函数不能用幂级数方式定义的点的距离。到 a的距离严格小于 R的所有点组成的集合称为收敛圆盘。最近点的取法是在整个复平面中,而不仅仅是在实轴上,即使中心和系数都是实数时也是如此。
下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消