求二元函数Z=ln(x^2+y^2)+x/y的一阶,二阶偏导
1个回答
关注
展开全部
因为 $z = \ln(x^2 + y^2)$,
所以求全微分有:
$dz = \frac{2xdx + 2ydy}{x^2 + y^2}$
则:
$z_x = \frac{2x}{x^2 + y^2}$
$z_y = \frac{2y}{x^2 + y^2}$
进一步求导,有:
$z_{xx} = \frac{2(x^2 + y^2 - 2x^2)}{(x^2 + y^2)^2} = \frac{2(x^2 - y^2)}{(x^2 + y^2)^2}$
$z_{yy} = \frac{2(x^2 + y^2 - 2y^2)}{(x^2 + y^2)^2} = \frac{2(x^2 - y^2)}{(x^2 + y^2)^2}$
咨询记录 · 回答于2024-01-13
求二元函数Z=ln(x^2+y^2)+x/y的一阶,二阶偏导
# 因为 z=ln(x^2+y^2),所以求全微分有:
dz = (2xdx + 2ydy) / (x^2 + y^2)
则:
z'x = 2x / (x^2 + y^2)
z'y = 2y / (x^2 + y^2)
# 进一步求导,有:
z'xx = 2(x^2 + y^2 - 2x^2) / (x^2 + y^2)^2 = 2(x^2 - y^2) / (x^2 + y^2)^2
z'yy = 2(x^2 + y^2 - 2y^2) / (x^2 + y^2)^2 = 2(x^2 - y^2) / (x^2 + y^2)^2
因为 $z = \ln(x^2 + y^2)$,
所以求全微分有:$dz = \frac{2xdx + 2ydy}{x^2 + y^2}$。
则:
$z_{x} = \frac{2x}{x^2 + y^2}$,
$z_{y} = \frac{2y}{x^2 + y^2}$。
进一步求导,有:
$z_{xx} = \frac{2(x^2 + y^2 - 2x^2)}{(x^2 + y^2)^2} = \frac{2(x^2 - y^2)}{(x^2 + y^2)^2}$,
$z_{yy} = \frac{2(x^2 + y^2 - 2y^2)}{(x^2 + y^2)^2} = \frac{2(x^2 - y^2)}{(x^2 + y^2)^2}$。