用简便方法计算2+4+6+8加省略号加100
1个回答
展开全部
设这个等差数列共有n位。
则2n=100,n=100/2=50。
2+4+6+8+……+100=(2+100)x50/2
=(2+100)x25
=50+2500
=2550
等差数列的各种公式:
公差d=(an-a1)÷(n-1)(其中n大于或等于2,n属于正整数);
项数=(末项-首项来)÷公差+1;
末项=首项+(项数-1)×公差;
前n项的和Sn=首项×n+项数(项数-1)公差/2;
第n项的值an=首项+(项数-1)×公差;
等差数源列中知项公式2an+1=an+an+2其中{an}是等差数列;
等差数列的和=(首项+末项)×项数÷2
第n项的值an=首项+(项数-1)×公差
an=am+(n-m)d ,若已知某一项am,可列出与d有关的式子求解an
例如 a10=a4+6d或者a3=a7-4d
前n项的和Sn=首项×n+项数(项数-1)公差/2