求f(x/y)的一阶偏导数
1个回答
关注
展开全部
咨询记录 · 回答于2023-04-10
求f(x/y)的一阶偏导数
亲,你好!为您找寻的答案:设 $u=\frac{x}{y}$,则 $f(x/y)=f(u)$。根据链式法则,有:$$\frac{\partial f(x/y)}{\partial x} = \frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial x} = \frac{1}{y} \cdot \frac{\partial f}{\partial u}$$$$\frac{\partial f(x/y)}{\partial y} = \frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial y} = \frac{-x}{y^2} \cdot \frac{\partial f}{\partial u}$$因此,一阶偏导数为:$$\frac{\partial f(x/y)}{\partial x} = \frac{1}{y} \cdot \frac{\partial f}{\partial u}, \quad \frac{\partial f(x/y)}{\partial y} = \frac{-x}{y^2} \cdot \frac{\partial f}{\partial u}