求+∫2/(3+-5x)dx
1个回答
关注
展开全部
咨询记录 · 回答于2021-12-12
求+∫2/(3+-5x)dx
Method 1 :换元积分法令u = 3-5x,du = -5dx -> dx = (-1/5)du原式 = ∫ sinu * (-1/5)du= (-1/5) * (-cosu) + c= (1/5)cos(3-5x) + cMethod 2:凑微分法∫ sin(3-5x) dx= ∫ sin(3-5x) d(-5x) / (-5),先凑个-5,乘以-5再除以-5= (-1/5)∫ sin(3-5x) d(-5x)= (-1/5)∫ sin(3-5x) d(-5x+3),再凑个+3= (-1/5)∫ sin(3-5x) d(3-5x)= (-1/5) * [-cos(3-5x)] + c= (1/5)cos(3-5x) + c
已赞过
评论
收起
你对这个回答的评价是?