求数列|an-n-2|的前n项和
1个回答
关注
展开全部
如果一个数列{an),与首末项等距的两项之和等于首末两项之和,可采用把正着写与倒着写的两个
和式相加,就得到一个常数列的和,这一求和方法称为倒序相加法。我们在学知识时,不但要知其果,
更要索其因,知识的得出过程是知识的源头,也是研究同一类知识的工具,例如:等差数列前n项和公
式的推导,用的就是“倒序相加法”
二、用公式法求数列的前n项和
对等差数列、等比数列,求前n项和Sn可直接用等差、等比数列的前n项和公式进行求解。运用公
式求解的注意事项:首先要注意公式的应用范围,确定公式适用于这个数列之后,再计算。
三、用裂项相消法求数列的前n项和
裂项相消法是将数列的一项拆成两项或多项,使得前后项相抵消,留下有限项,从而求出数列的前
n项和。
四、用错位相减法求数列的前n项和
错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式。即若在数列
{an·bn}中,{an}成等差数列,{bn}成等比数列,在和式的两边同乘以公比,再与原式错位相减整理后
即可以求出前n项和。
五、用迭加法求数列的前n项和
迭加法主要应用于数列(an)满足an+1=an+f(n),其中f(n是等差数列或等比数列的条件下,可把
这个式子变成an+1-an=f(n),代入各项,得到一系列式子,把所有的式子加到一起,经过整理,可求
出an,从而求出Sn。
六、用分组求和法求数列的前n项和
所谓分组求和法就是对一类既不是等差数列,也不是等比数列的数列,若将这类数列适当拆开,可
分为几个等差、等比或常见的数列,然后分别求和,再将其合并。
七、用构造法求数列的前n项和
所谓构造法就是先根据数列的结构及特征进行分析,找出数列的通项的特征,构造出我们熟知
本数列的通项的特征形式,从而求出数列的前n项和。
咨询记录 · 回答于2022-05-23
求数列|an-n-2|的前n项和
您好亲,感谢您的到访~问题我已经看到了,客服正在为您整理答案,请耐心稍等一会儿哦~
如果一个数列{an),与首末项等距的两项之和等于首末两项之和,可采用把正着写与倒着写的两个和式相加,就得到一个常数列的和,这一求和方法称为倒序相加法。我们在学知识时,不但要知其果,更要索其因,知识的得出过程是知识的源头,也是研究同一类知识的工具,例如:等差数列前n项和公式的推导,用的就是“倒序相加法”二、用公式法求数列的前n项和对等差数列、等比数列,求前n项和Sn可直接用等差、等比数列的前n项和公式进行求解。运用公式求解的注意事项:首先要注意公式的应用范围,确定公式适用于这个数列之后,再计算。三、用裂项相消法求数列的前n项和裂项相消法是将数列的一项拆成两项或多项,使得前后项相抵消,留下有限项,从而求出数列的前n项和。四、用错位相减法求数列的前n项和错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式。即若在数列{an·bn}中,{an}成等差数列,{bn}成等比数列,在和式的两边同乘以公比,再与原式错位相减整理后即可以求出前n项和。五、用迭加法求数列的前n项和迭加法主要应用于数列(an)满足an+1=an+f(n),其中f(n是等差数列或等比数列的条件下,可把这个式子变成an+1-an=f(n),代入各项,得到一系列式子,把所有的式子加到一起,经过整理,可求出an,从而求出Sn。六、用分组求和法求数列的前n项和所谓分组求和法就是对一类既不是等差数列,也不是等比数列的数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并。七、用构造法求数列的前n项和所谓构造法就是先根据数列的结构及特征进行分析,找出数列的通项的特征,构造出我们熟知本数列的通项的特征形式,从而求出数列的前n项和。
你好亲,如果我的解答对您有所帮助,还请给个赞(在左下角进行评价哦),期待您的赞,您的举手之劳对我很重要,您的支持也是我进步的动力。如果觉得我的解答还满意,可以点我头像一对一咨询。最后再次祝您身体健康,心情愉快!
【问一问自定义消息】
亲,请您稍等,您咨询的问题这边正在整理答案,需要一点时间哦。
设数列{an}的前n项和为Sn,已知S2=4,an+1=2Sn+1,n∈N*.(Ⅰ)求通项公式an;(Ⅱ)求数列{|an-n-2|}的前n项和.
?
亲,请您稍等,您咨询的问题这边正在整理答案,需要一点时间哦。
你好亲,等差数列的通项公式为:an-n-2前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2 (n属于自然数)。a1为首项,an为末项,n为项数,d为等差数列的公差。等比数列 an=a1×q^(n-1);求和:Sn=a1(1-q^n)/(1-q) =(a1-an×q)/(1-q) (q≠1)推导等差数列的前n项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个(a1+an)