2.设 f(x^2-1)=ln x^2/(x^2-1), 且 f((x))=ln(1+x), 则不定积分 -(x)dx=(-|||

1个回答
展开全部
咨询记录 · 回答于2023-03-26
2.设 f(x^2-1)=ln x^2/(x^2-1), 且 f((x))=ln(1+x), 则不定积分 -(x)dx=(-|||
亲亲您好,很高兴为您解答哦根据题目已知条件,可以得到:f(x^2 - 1) = ln(x^2 / (x^2 - 1))f((x)) = ln(1 + x)要求的不定积分是 -(x)dx,即负号下为 (x)dx 的不定积分。因此,我们需要先对 (x)dx 进行变量代换,令 t = x^2 - 1,则有:dx = dt / (2x)同时,当 x = -1 时,t = x^2 - 1 = 0。因此,原不定积分可以转化为:-(x)dx = -∫(t=0)^(1) dt / (2√(t+1))接下来,我们需要考虑如何将变量代换后的不定积分转化为原函数。根据题目已知条件可得:f(x^2 - 1) = ln(x^2 / (x^2 - 1)) = 2ln|x| - ln|x^2 - 1|f((x)) = ln(1 + x)因此,我们可以将变量代换后的不定积分写成以下形式:-∫(t=0)^(1) dt / (2√(t+1)) = -∫(t=0)^(1) [f(t+1) - f(1)] dt / 2接下来,我们可以对 f(t+1) 进行变量代换,令 u = t + 1,则有:-∫(t=0)^(1) [f(t+1) - f(1)] dt / 2 = -∫(u=1)^(2) [f(u) - f(1)] du / 2因此,原不定积分可以写成以下形式:-(x)dx = -∫(u=1)^(2) [f(u) - f(1)] du / 2将题目已知条件代入上式,可得:-(x)dx = -∫(u=1)^(2) [ln(1 + u) - ln 2] du / 2-(x)dx = -[u ln(1 + u) - u + ln 2u]_(u=1)^(u=2) / 2-(x)dx = -[2 ln 3 - ln 4 - 1] / 2因此,最终答案为:-(x)dx = (ln 4 - 2 ln 3 + 1) / 2
下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消