找到一个可对角化矩阵A,相似于−A
1个回答
关注
展开全部
可对角化矩阵是线性代数和矩阵论中重要的一类矩阵。如果一个方块矩阵 A 相似于对角矩阵,也就是说,如果存在一个可逆矩阵 P 使得 P −1AP 是对角矩阵,则它就被称为可对角化的。如果 V 是有限维度的向量空间,则线性映射 T : V → V 被称为可对角化的,如果存在 V 的一个基,T 关于它可被表示为对角矩阵。对角化是找到可对角化矩阵或映射的相应对角矩阵的过程。可对角化矩阵和映射在线性代数中有重要价值,因为对角矩阵特别容易处理: 它们的特征值和特征向量是已知的,并通过简单的提升对角元素到同样的幂来把一个矩阵提升为它的幂。
咨询记录 · 回答于2022-12-19
找到一个可对角化矩阵A,相似于−A
题目自拍给我一下
设A可对角化为B,这意味着存在相似变换矩阵S使得B=S[-1]AS所以S'A'S'[-1]=B'=B=S[-1]AS于是A'=S'[-1]S[-1]ASS'=(SS')[-1]ASS'即存在相似变换矩阵SS'使得A~A'
可对角化矩阵是线性代数和矩阵论中重要的一类矩阵。如果一个方块矩阵 A 相似于对角矩阵,也就是说,如果存在一个可逆矩阵 P 使得 P −1AP 是对角矩阵,则它就被称为可对角化的。如果 V 是有限维度的向量空间,则线性映射 T : V → V 被称为可对角化的,如果存在 V 的一个基,T 关于它可被表示为对角矩阵。对角化是找到可对角化矩阵或映射的相应对角矩阵的过程。可对角化矩阵和映射在线性代数中有重要价值,因为对角矩阵特别容易处理: 它们的特征值和特征向量是已知的,并通过简单的提升对角元素到同样的幂来把一个矩阵提升为它的幂。