29.求一阶线性微分方程y'-_x-x=0的通解.
1个回答
关注
展开全部
同学你好:从你描述的的问题得来的解答是:解:dy/dx=(y/x)/[(y/x)-1]...............(1)令y/x=u,则y=ux,dy/dx=u+x(du/dx),代入(1)式得:u+x(du/dx)=u/(u-1),x(du/dx)=[u/(u-1)]-u=(2u-u²)/(u-1),分离变量得:[(u-1)/(2u-u²)]du=dx/x,积分之:∫[(u-1)/(2u-u²)]du=lnx左边=∫[(u-1)/u(2-u)]du=∫[1/(2-u)-1/u(2-u)]du=∫{1/(2-u)-(1/2)[(1/u)+1/(2-u)]}du=(1/2)∫[1/(2-u)-(1/u)]du=(1/2)[-ln(u-2)-lnu]-lnc₁故有(1/2)[-ln(u-2)-lnu]=lnc₁+lnx=ln(c₁x)ln[(u-2)u]=-2ln(c₁x),(u-2)u=1/(c₁x)²将u=y/x代入即得通解为:[(y/x)-2](y/x)=1/(c₁x)²,即y(y-2x)=c为所求。
咨询记录 · 回答于2022-10-19
29.求一阶线性微分方程y'-_x-x=0的通解.
同学你好:从你描述的的问题得来的解答是:解:dy/dx=(y/x)/[(y/x)-1]...............(1)令y/x=u,则y=ux,dy/dx=u+x(du/dx),代入(1)式得:u+x(du/dx)=u/(u-1),x(du/dx)=[u/(u-1)]-u=(2u-u²)/(u-1),分离变量得:[(u-1)/(2u-u²)]du=dx/x,积分之:∫[(u-1)/(2u-u²)]du=lnx左边=∫[(u-1)/u(2-u)]du=∫[1/(2-u)-1/u(2-u)]du=∫{1/(2-u)-(1/2)[(1/u)+1/(2-u)]}du=(1/2)∫[1/(2-u)-(1/u)]du=(1/2)[-ln(u-2)-lnu]-lnc₁故有(1/2)[-ln(u-2)-lnu]=lnc₁+lnx=ln(c₁x)ln[(u-2)u]=-2ln(c₁x),(u-2)u=1/(c₁x)²将u=y/x代入即得通解为:[(y/x)-2](y/x)=1/(c₁x)²,即y(y-2x)=c为所求。
扩展:根据已有条件,设y*=x(ax+b)=ax²+bxy*'=2ax+by*''=2a代回原方程y''-y'=x2a-(2ax+b)=x2a-2ax-b=x得a=-1/2b=-1所以y*=(-x²/2) -1通解y=Y+y*=C1+C2*e^x -x²/2 -1