如图①,P为△ABC内一点,连接PA、PB、PC,在△PAB、△PBC和△PAC中,如果存在一个三角形与△ABC相似,那
如图①,P为△ABC内一点,连接PA、PB、PC,在△PAB、△PBC和△PAC中,如果存在一个三角形与△ABC相似,那么就称P为△ABC的自相似点.(1)如图②,已知R...
如图①,P为△ABC内一点,连接PA、PB、PC,在△PAB、△PBC和△PAC中,如果存在一个三角形与△ABC相似,那么就称P为△ABC的自相似点.(1)如图②,已知Rt△ABC中,∠ACB=90°,∠ABC>∠A,CD是AB上的中线,过点B作BE丄CD,垂足为E.试说明E是△ABC的自相似点;(2)在△ABC中,∠A<∠B<∠C.①如图③,利用尺规作出△ABC的自相似点P(写出作法并保留作图痕迹);②若△ABC的内心P是该三角形的自相似点,求该三角形三个内角的度数.
展开
1个回答
展开全部
解:(1)在Rt△ABC中,∠ACB=90°,CD是AB上的中线,
∴CD=
AB,
∴CD=BD,
∴∠BCE=∠ABC,
∵BE⊥CD,∴∠BEC=90°,
∴∠BEC=∠ACB,
∴△BCE∽△ABC,
∴E是△ABC的自相似点;
(2)①如图所示,
作法:①在∠ABC内,作∠CBD=∠A,
②在∠ACB内,作∠BCE=∠ABC,BD交CE于点P,
则P为△ABC的自相似点;
②∵P是△ABC的内心,∴∠PBC=
∠ABC,∠PCB=
∠ACB,
∵△ABC的内心P是该三角形的自相似点,
∴∠PBC=∠A,∠BCP=∠ABC=2∠PBC=2∠A,∠ACB=2∠BCP=4∠A,
∴∠A+2∠A+4∠A=180°,
∴∠A=
,
∴该三角形三个内角度数为:
,
,
.
∴CD=
1 |
2 |
∴CD=BD,
∴∠BCE=∠ABC,
∵BE⊥CD,∴∠BEC=90°,
∴∠BEC=∠ACB,
∴△BCE∽△ABC,
∴E是△ABC的自相似点;
(2)①如图所示,
作法:①在∠ABC内,作∠CBD=∠A,
②在∠ACB内,作∠BCE=∠ABC,BD交CE于点P,
则P为△ABC的自相似点;
②∵P是△ABC的内心,∴∠PBC=
1 |
2 |
1 |
2 |
∵△ABC的内心P是该三角形的自相似点,
∴∠PBC=∠A,∠BCP=∠ABC=2∠PBC=2∠A,∠ACB=2∠BCP=4∠A,
∴∠A+2∠A+4∠A=180°,
∴∠A=
180° |
7 |
∴该三角形三个内角度数为:
180° |
7 |
360° |
7 |
720° |
7 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询