![](https://iknow-base.cdn.bcebos.com/lxb/notice.png)
z=sin(xy)+(cos(xy))^2用全微分四则运算法则求全微分
1个回答
关注
![](https://wyw-base.cdn.bcebos.com/pc-content/follow.gif)
展开全部
咨询记录 · 回答于2023-03-31
z=sin(xy)+(cos(xy))^2用全微分四则运算法则求全微分
亲亲~![](https://s.bdstatic.com/common/openjs/emoticon/img/face_02.png)
您好,很高兴为您解答哈~
。z=sin(xy)+(cos(xy))^2用全微分四则运算法则求全微分如下:设z=f(x,y)=sin(xy)+(cos(xy))^2,则有:∂f/∂x = y*cos(xy) - 2*y*sin(xy)*cos(xy),∂f/∂y = x*cos(xy) - 2*x*sin(xy)*cos(xy),根据全微分四则运算法则,全微分dz可表示为:dz = ∂f/∂x * dx + ∂f/∂y * dy,将∂f/∂x 和∂f/∂y 的表达式代入上式,得到:dz = (y*cos(xy) - 2*y*sin(xy)*cos(xy)) * dx + (x*cos(xy) - 2*x*sin(xy)*cos(xy)) * dy,因此,z=sin(xy)+(cos(xy))^2的全微分为:dz = (y*cos(xy) - 2*y*sin(xy)*cos(xy)) * dx + (x*cos(xy) - 2*x*sin(xy)*cos(xy)) * dy。
![](https://s.bdstatic.com/common/openjs/emoticon/img/face_02.png)
![](https://s.bdstatic.com/common/openjs/emoticon/img/face_246.png)
![](https://s.bdstatic.com/common/openjs/emoticon/img/face_01.png)