三角形ABC,AD为CB上的高,CD等于5,BD等于2,CE为AB上的高。CE AD相交于点F,AB等于CF,求三角形ACF的面积
1个回答
关注
展开全部
亲亲您好,根据您的问题三角形ABC,AD为CB上的高,CD等于5,BD等于2,CE为AB上的高。CE AD相交于点F,AB等于CF,求三角形ACF的面积:首先利用勾股定理求得三角形CBD的底边长为\sqrt{5^2-2^2}=3\sqrt{3}。由于CE\perp AB,AD\perp BC,因此四边形ABCD是一个梯形,其上底为AB,下底为CD,高为AD,因此梯形面积为(AB+CD)\times AD/2。又因为AB=CF,所以梯形面积为(AB+CD)\times AD/2=(AB+AB)\times AD/2=AB\times AD=CE\times AD。又因为CE与AD相交于点$F$,因此三角形ACF的面积为(1/2)\times AC\times CF=(1/2)\times AD\times CE=(1/2)\times (CE\times AD)=\boxed{\frac{15\sqrt{3}}{2}}。
咨询记录 · 回答于2023-06-15
三角形ABC,AD为CB上的高,CD等于5,BD等于2,CE为AB上的高。CE AD相交于点F,AB等于CF,求三角形ACF的面积
能稍微快点吗
亲亲您好,根据您的问题三角形ABC,AD为CB上的高,CD等于5,BD等于2,CE为AB上的高。CE AD相交于点F,AB等于CF,求三角形ACF的面积:首先利用勾股定理求得三角形CBD的底边长为\sqrt{5^2-2^2}=3\sqrt{3}。由于CE\perp AB,AD\perp BC,因此四边形ABCD是一个梯形,其上底为AB,下底为CD,高为AD,因此梯形面积为(AB+CD)\times AD/2。又因为AB=CF,所以梯形面积为(AB+CD)\times AD/2=(AB+AB)\times AD/2=AB\times AD=CE\times AD。又因为CE与AD相交于点$F$,因此三角形ACF的面积为(1/2)\times AC\times CF=(1/2)\times AD\times CE=(1/2)\times (CE\times AD)=\boxed{\frac{15\sqrt{3}}{2}}。
亲亲,好啦