二重积分y型区域上下限的确定

1个回答
展开全部
摘要 首先的话,是需要去确定图形的四个端点,从而知道二重积分整个图形范围的横纵坐标跨度,这个跨度就是积分的上下限,x对应x,y对应y。然后再去在空间直角坐标系中,二重积分是各部分区域上柱体体积的代数和,在xoy平面上方的取正,在xoy平面下方的取负。某些特殊的被积函数f(x,y)的所表示的曲面和D底面所为围的曲顶柱体的体积公式已知,可以用二重积分的几何意义的来计算。最后在极坐标系下计算二重积分,需将被积函数f(x,y),积分区域D以及面积元素dσ都用极坐标表示。函数f(x,y)的极坐标形式为f(rcosθ,内rsinθ)。4/4为得到极坐标下的面积元素dσ的转换,用坐标曲线网去分割D,即用以r=a,即O为圆心r为半径的圆和以θ=b,O为起点的射容线去无穷分割D,设Δσ就是r到r+dr和从θ到θ+dθ的小区域。
咨询记录 · 回答于2023-06-20
二重积分y型区域上下限的确定
首先的话,是需要去确定图形的四个端点,从而知道二重积分整个图形范围的横纵坐标跨度,这个跨度就是积分的上下限,x对应x,y对应y。然后再去在空间直角坐标系中,二重积分是各部分区域上柱体体积的代数和,在xoy平面上方的取正,在xoy平面下方的取负。某些特殊的被积函数f(x,y)的所表示的曲面和D底面所为围的曲顶柱体的体积公式已知,可以用二重积分的几何意义的来计算。最后在极坐标系下计算二重积分,需将被积函数f(x,y),积分区域D以及面积元素dσ都用极坐标表示。函数f(x,y)的极坐标形式为f(rcosθ,内rsinθ)。4/4为得到极坐标下的面积元素dσ的转换,用坐标曲线网去分割D,即用以r=a,即O为圆心r为半径的圆和以θ=b,O为起点的射容线去无穷分割D,设Δσ就是r到r+dr和从θ到θ+dθ的小区域。
给你总结的话就是1、这个跨度就是积分的上下限,x对应x,y对应y。2、可以用二重积分的几何意义的来计算。3、积分区域D以及面积元素dσ都用极坐标表示。
然后你还需要注意一点,注意事项注意判断过程中并没有明确用到积分区域D的类型。在极坐标系下计算二重积分。
已赞过
你对这个回答的评价是?
评论 收起
下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消