确定a.b,使得函数+f(x)=\(2e^x+a,x<0x^2+bx+1,x0.处处可导
1个回答
关注
展开全部
咨询记录 · 回答于2023-05-24
确定a.b,使得函数+f(x)=\(2e^x+a,x<0x^2+bx+1,x0.处处可导
亲亲您好,很高兴为您解答哦根据题意,我们需要确定a和b的值,使得f(x)在x=0处处可导。对于x=0的部分,f(x)=x^2+bx+1,连续可导。在x=0处,要求两侧的导数相等,即lim(x→0-x) f'(x) = lim(x→0+) f'(x)lim(x→0-x) (2e^x+a) = lim(x→0+) (2x+b)2a = b再次对f(x)求导,得到f'(x) = 2e^x , x 2x+b , x>=0在x=0处,要求两侧的导数相等,即lim(x→0-x) f''(x) = lim(x→0+) f''(x)lim(x→0-x) 2e^x = lim(x→0+) 22 = 2因此,当a=2,b=4时,f(x)在x=0处处可导。