一道智力题
在网上看到这么一道题:5个海盗抢到了100颗宝石,每一颗都一样的大小和价值连城。他们决定这么分:1。抽签决定自己的号码(1,2,3,4,5)2。首先,由1号提出分配方案,...
在网上看到这么一道题:5个海盗抢到了100颗宝石,每一颗都一样的大小和价值连城。他们决定这么分: 1。抽签决定自己的号码(1,2,3,4,5) 2。首先,由1号提出分配方案,然后大家5人进行表决,当且仅当半数和超过半数的人同意时,按照他的提案进行分配,否则将被扔入大海喂鲨鱼。 3。如果1号死后,再由2号提出分配方案,然后大家4人进行表决,当且仅当半数和超过半数的人同意时,按照他的提案进行分配,否则将被扔入大海喂鲨鱼。 4。以次类推...... 条件: 每个海盗都是很聪明的人,都能很理智的判断得失,从而做出选择。问题:第一个海盗提出怎样的分配方案才能够使自己的收益最大化。
展开
3个回答
展开全部
1号海盗分给3号1颗宝石,4号或5号海盗2颗,独得97颗。分配方案为:97,0,1,2,0 或 97,0,1,0,2。
推理过程:
从后向前推,如果1—3号海盗都喂了鲨鱼,只剩4号和5号的话,5号一定投反对票让4号喂鲨鱼,以独吞全部宝石。所以,4号唯有支持3号才能保命。3号知道这一点,就会提出(100,0,0)的分配方案,对4号、5号一毛不拔而将全部宝石占为己有。因为他知道4号一无所有但还是会投赞成票,再加上自己一票他的方案即可通过。不过,2号推知到3号的方案,就会提出(98,0,1,1)的方案,即放弃3号,而给予4号和5号各一颗宝石。
由于该方案对于4号和5号来说比在3号分配时更为有利,他们将支持他不希望他出局而由3号来分配。
这样,2号将拿走98颗宝石。不过,2号的方案会被1号所洞悉,1号将提出(97,0,1,2,0)或(97,0,1,0,2)的方案,即放弃2号,而给3号一颗宝石,同时给4号(或5号)2颗宝石。由于1号的解决方案对于3号和4号(或5号)来说,相比2号分配时更优,他们将投1号的赞成票,再加上1号自己的票,1号的方案通过,97颗宝石可以轻松落入囊中。这无疑是1号能够获取最大收益的方案了。
在"海盗分赃"模型中,任何"分配者"想让自己的方案获得通过的关键是,事先考虑清楚"挑战者"的分配方案是什么,并用最小的代价获取最大收益,拉拢"挑战者"分配方案中最不得意的人们。1号看起来最有可能喂鲨鱼,但他牢牢地把握住先发优势,结果不但消除了死亡威胁,还收益最大。而5号,看起来最安全,没有死亡的威胁,甚至还能坐收渔人之利,却因不得不看别人脸色行事而只能分得一小杯羹。
推理过程:
从后向前推,如果1—3号海盗都喂了鲨鱼,只剩4号和5号的话,5号一定投反对票让4号喂鲨鱼,以独吞全部宝石。所以,4号唯有支持3号才能保命。3号知道这一点,就会提出(100,0,0)的分配方案,对4号、5号一毛不拔而将全部宝石占为己有。因为他知道4号一无所有但还是会投赞成票,再加上自己一票他的方案即可通过。不过,2号推知到3号的方案,就会提出(98,0,1,1)的方案,即放弃3号,而给予4号和5号各一颗宝石。
由于该方案对于4号和5号来说比在3号分配时更为有利,他们将支持他不希望他出局而由3号来分配。
这样,2号将拿走98颗宝石。不过,2号的方案会被1号所洞悉,1号将提出(97,0,1,2,0)或(97,0,1,0,2)的方案,即放弃2号,而给3号一颗宝石,同时给4号(或5号)2颗宝石。由于1号的解决方案对于3号和4号(或5号)来说,相比2号分配时更优,他们将投1号的赞成票,再加上1号自己的票,1号的方案通过,97颗宝石可以轻松落入囊中。这无疑是1号能够获取最大收益的方案了。
在"海盗分赃"模型中,任何"分配者"想让自己的方案获得通过的关键是,事先考虑清楚"挑战者"的分配方案是什么,并用最小的代价获取最大收益,拉拢"挑战者"分配方案中最不得意的人们。1号看起来最有可能喂鲨鱼,但他牢牢地把握住先发优势,结果不但消除了死亡威胁,还收益最大。而5号,看起来最安全,没有死亡的威胁,甚至还能坐收渔人之利,却因不得不看别人脸色行事而只能分得一小杯羹。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询