1/(tant-1)sec²t的积分
1个回答
关注
展开全部
咨询记录 · 回答于2024-01-02
1/(tant-1)sec²t的积分
ctanx=t, 则 x=tant, dx=sec^2tdt
∫xe^arctanx/(1+x^2)^3/2dx
=∫tante^t/(1+tan^2;t)^3/2*sec^2tdt
=∫tante^t/sec ^2t sec ^2tdt
=∫tante^t/sectdt
=∫sinte^tdt (1)
=-∫e^tdcost
=-coste^t+∫coste^tdt
=-coste^t+sinte^t-∫sinte^tdt (2)
由 (1)(2)得
∫sinte^tdt =1/2( sinte^t-coste^t ) +C
=1/2( sint-cost)e^t +C
=1/2cost(tant-1)e^t +C
=1/2*1/√(tan^2t+1)*(tant-1)e^t +C
=1/2*1/√(x^2+1)*(x-1)e^arctanx+C
=√(x^2+1)*(x-1)e^arctanx/(x^2+1)+C
即
∫xe^arctanx/(1+x^2)^3/2dx
=√(x^2+1)*(x-1)e^arctanx/(x^2+1)+C
已赞过
评论
收起
你对这个回答的评价是?