拉格朗日中值定理
1个回答
关注
展开全部
微积分中的拉格朗日定理即(拉格朗日中值定理):设函数f(x)满足条件:(1)在闭区间[a,b]上连续。(2)在开区间(a,b)可导。则至少存在一点ε∈(a,b),使得f(b) - f(a)=f'(ε)(b-a)或者f(b)=f(a) + f '(ε)(b - a)。
咨询记录 · 回答于2023-03-28
拉格朗日中值定理
亲亲,拉格朗日中值定理又称拉氏定理,是微分学中的基本定理之一,它反映了可导函数在闭区间上的整体的平均变化率与区间内某点的局部变化率的关系。拉格朗日中值定理是罗尔中值定理的推广,同时也是柯西中值定理的特殊情形,是泰勒公式的弱形式(一阶展开)。
拉格朗日定理公式f(ζ)=(M-m)/(b-a)
微积分中的拉格朗日定理即(拉格朗日中值定理):设函数f(x)满足条件:(1)在闭区间[a,b]上连续。(2)在开区间(a,b)可导。则至少存在一点ε∈(a,b),使得f(b) - f(a)=f'(ε)(b-a)或者f(b)=f(a) + f '(ε)(b - a)。