几何中有哪几种做辅助线的方法?
2个回答
展开全部
一、见中点引中位线,见中线延长一倍
在几何题中,如果给出中点或中线,可以考虑过中点作中位线或把中线延长一倍来解决相关问题。
二、
在比例线段证明中,常作平行线。
作平行线时往往是保留结论中的一个比,然后通过一个中间比与结论中的另一个比联系起来。
三、对于梯形问题,常用的添加辅助线的方法有
1、
过上底的两端点向下底作垂线
2、
过上底的一个端点作一腰的平行线
3、
过上底的一个端点作一对角线的平行线
4、
过一腰的中点作另一腰的平行线
5、
过上底一端点和一腰中点的直线与下底的延长线相交
6、
作梯形的中位线
7
延长两腰使之相交
四、在解决圆的问题中
1、两圆相交连公共弦。
2
两圆相切,过切点引公切线。
3、见直径想直角
4、遇切线问题,连结过切点的半径是常用辅助线
5、解决有关弦的问题时,常常作弦心距。
以上是我总结的常见的辅助线。
在几何题中,如果给出中点或中线,可以考虑过中点作中位线或把中线延长一倍来解决相关问题。
二、
在比例线段证明中,常作平行线。
作平行线时往往是保留结论中的一个比,然后通过一个中间比与结论中的另一个比联系起来。
三、对于梯形问题,常用的添加辅助线的方法有
1、
过上底的两端点向下底作垂线
2、
过上底的一个端点作一腰的平行线
3、
过上底的一个端点作一对角线的平行线
4、
过一腰的中点作另一腰的平行线
5、
过上底一端点和一腰中点的直线与下底的延长线相交
6、
作梯形的中位线
7
延长两腰使之相交
四、在解决圆的问题中
1、两圆相交连公共弦。
2
两圆相切,过切点引公切线。
3、见直径想直角
4、遇切线问题,连结过切点的半径是常用辅助线
5、解决有关弦的问题时,常常作弦心距。
以上是我总结的常见的辅助线。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
l楼主你好
以下是常见的做辅助线的方法(虽说从网上寻找
——
!
不过
希望对你有帮助)
一、见中点引中位线,见中线延长一倍
在几何题中,如果给出中点或中线,可以考虑过中点作中位线或把中线延长一倍来解决相关问题。
二、
在比例线段证明中,常作平行线。
作平行线时往往是保留结论中的一个比,然后通过一个中间比与结论中的另一个比联系起来。
三、对于梯形问题,常用的添加辅助线的方法有
1、
过上底的两端点向下底作垂线
2、
过上底的一个端点作一腰的平行线
3、
过上底的一个端点作一对角线的平行线
4、
过一腰的中点作另一腰的平行线
5、
过上底一端点和一腰中点的直线与下底的延长线相交
6、
作梯形的中位线
7
延长两腰使之相交
四、在解决圆的问题中
1、两圆相交连公共弦。
2
两圆相切,过切点引公切线。
3、见直径想直角
4、遇切线问题,连结过切点的半径是常用辅助线
5、解决有关弦的问题时,常常作弦心距
以下是常见的做辅助线的方法(虽说从网上寻找
——
!
不过
希望对你有帮助)
一、见中点引中位线,见中线延长一倍
在几何题中,如果给出中点或中线,可以考虑过中点作中位线或把中线延长一倍来解决相关问题。
二、
在比例线段证明中,常作平行线。
作平行线时往往是保留结论中的一个比,然后通过一个中间比与结论中的另一个比联系起来。
三、对于梯形问题,常用的添加辅助线的方法有
1、
过上底的两端点向下底作垂线
2、
过上底的一个端点作一腰的平行线
3、
过上底的一个端点作一对角线的平行线
4、
过一腰的中点作另一腰的平行线
5、
过上底一端点和一腰中点的直线与下底的延长线相交
6、
作梯形的中位线
7
延长两腰使之相交
四、在解决圆的问题中
1、两圆相交连公共弦。
2
两圆相切,过切点引公切线。
3、见直径想直角
4、遇切线问题,连结过切点的半径是常用辅助线
5、解决有关弦的问题时,常常作弦心距
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |