2^2+2(2k+1)+k^2-2=0

1个回答
展开全部
摘要 发展历程南宋数学家秦九韶至晚在1247年就已经发现一元三次方程的求根公式,欧洲人在400多年后才发现,但在中国的课本上这个公式仍是以那个欧洲人的名字来命名的。一元三次方程ax^3+bx^2+cx+d=0的求根公式是1545年由意大利的卡当发表在《关于代数的大法》一书中,人们就把它叫做“卡当公式”。可是事实上,发现公式的人并不是卡当本从,而是塔塔利亚(TartagliaN.,约1499~1557).发现此公式后。
咨询记录 · 回答于2022-09-21
2^2+2(2k+1)+k^2-2=0
亲,您上面发的题目乱码了,能重新拍个照片给我吗?不然没法解题哦,亲
满足条件一元二次方程必须同时满足三个条件:①是整式方程,即等号两边都是整式,方程中如果有分母;且未知数在分母上,那么这个方程就是分式方程,不是一元二次方程,方程中如果有根号,且未知数在根号内,那么这个方程也不是一元二次方程(是无理方程)。②只含有一个未知数;③未知数项的最高次数是2。
1、配方法  所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
公式定义一元二次ax^2+bx+c=0可用求根公式x=求解,它是由方程系数直接把根表示出来的公式。这个公式早在公元9世纪由中亚细亚的阿尔·花拉子模给出。
发展历程南宋数学家秦九韶至晚在1247年就已经发现一元三次方程的求根公式,欧洲人在400多年后才发现,但在中国的课本上这个公式仍是以那个欧洲人的名字来命名的。一元三次方程ax^3+bx^2+cx+d=0的求根公式是1545年由意大利的卡当发表在《关于代数的大法》一书中,人们就把它叫做“卡当公式”。可是事实上,发现公式的人并不是卡当本从,而是塔塔利亚(TartagliaN.,约1499~1557).发现此公式后。
下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消